Do you want to publish a course? Click here

Domain imaging across the magneto-structural phase transition in Fe$_{1+y}$Te

71   0   0.0 ( 0 )
 Added by Jens Wiebe
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The investigation of the magnetic phase transitions in the parent compounds of Fe-based superconductors is regarded essential for an understanding of the pairing mechanism in the related superconducting compounds. Even though the chemical and electronic properties of these materials are often strongly inhomogeneous on a nanometer length scale, studies of the magnetic phase transitions using spatially resolved experimental techniques are still scarce. Here, we present a real space spin-resolved scanning tunneling microscopy investigation of the surface of Fe$_{1+y}$Te single crystals with different excess Fe content, $y$, which are continuously driven through the magnetic phase transition. For Fe$_{1.08}$Te, the transition into the low-temperature monoclinic commensurate antiferromagnetic phase is accompanied by the sudden emergence of ordering into four rotational domains with different orientations of the monoclinic lattice and of the antiferromagnetic order, showing how structural and magnetic order are intertwined. In the low-temperature phase of Fe$_{1.12}$Te one type of the domain boundaries disappears, and the transition into the paramagnetic phase gets rather broad, which is assigned to the formation of a mixture of orthorhombic and monoclinic phases.



rate research

Read More

The crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation (BEC) is difficult to realize in quantum materials because, unlike in ultracold atoms, one cannot tune the pairing interaction. We realize the BCS-BEC crossover in a nearly compensated semimetal Fe$_{1+y}$Se$_x$Te$_{1-x}$ by tuning the Fermi energy, $epsilon_F$, via chemical doping, which permits us to systematically change $Delta / epsilon_F$ from 0.16 to 0.5 were $Delta$ is the superconducting (SC) gap. We use angle-resolved photoemission spectroscopy to measure the Fermi energy, the SC gap and characteristic changes in the SC state electronic dispersion as the system evolves from a BCS to a BEC regime. Our results raise important questions about the crossover in multiband superconductors which go beyond those addressed in the context of cold atoms.
We use bulk magnetic susceptibility, electronic specific heat, and neutron scattering to study structural and magnetic phase transitions in Fe$_{1+y}$Se% $_x$Te$_{1-x}$. Fe$_{1.068}$Te exhibits a first order phase transition near 67 K with a tetragonal to monoclinic structural transition and simultaneously develops a collinear antiferromagnetic (AF) order responsible for the entropy change across the transition. Systematic studies of FeSe$%_{1-x}$Te$_x$ system reveal that the AF structure and lattice distortion in these materials are different from those of FeAs-based pnictides. These results call into question the conclusions of present density functional calculations, where FeSe$_{1-x}$Te$_x$ and FeAs-based pnictides are expected to have similar Fermi surfaces and therefore the same spin-density-wave AF order.
Laser angle-resolved photoemission spectroscopy (ARPES) is employed to investigate the temperature (T) dependence of the electronic structure in BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic transformation in Fermi surface (FS) shape across TN is observed, as expected by first-principles band calculations. Polarization-dependent ARPES and band calculations consistently indicate that the observed FSs at kz ~ pi in the low-T antiferromagnetic (AF) state are dominated by the Fe3dzx orbital, leading to the two-fold electronic structure. These results indicate that magneto-structural transition in BaFe2As2 accompanies orbital-dependent modifications in the electronic structure.
We present a systematic study of the nematic fluctuations in the iron chalcogenide superconductor Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ ($0 leq x leq 0.53$) using the elastoresistivity technique. Near $x = 0$, in proximity to the double-stripe magnetic order of Fe$_{1+y}$Te, a diverging $B_{1g}$ nematic susceptibility is observed. Upon increasing $x$, despite the absence of magnetic order, the $B_{2g}$ nematic susceptibility increases and becomes dominant, closely following the strength of the $(pi, pi)$ spin fluctuations. Over a wide range of compositions ($0.17 leq x leq 0.53$), while the $B_{2g}$ nematic susceptibility follows a Curie temperature dependence (with zero Weiss temperature) at low temperatures, it shows deviations from Curie-Weiss behavior for temperatures higher than $50K$. This is the opposite of what is observed in typical iron pnictides, where Curie-Weiss deviations are seen at low temperatures. We attribute this unusual temperature dependence to a loss of coherence of the $d_{xy}$ orbital, which is supported by our theoretical calculations. Our results highlight the importance of orbital differentiation on the nematic properties of iron-based materials.
178 - T. Gebre , G. Li , J. B. Whalen 2011
We compare the superconducting phase-diagram under high magnetic fields (up to $H = 45$ T) of Fe$_{1+y}$Se$_{0.4}$Te$_{0.6}$ single crystals originally grown by the Bridgman-Stockbarger (BRST) technique, which were annealed to display narrow superconducting transitions and the optimal transition temperature $T_c gtrsim 14$ K, with the diagram for samples of similar stoichiometry grown by the traveling-solvent floating-zone technique as well as with the phase-diagram reported for crystals grown by a self-flux method. We find that the so-annealed samples tend to display higher ratios $H_{c2}/T_c$, particularly for fields applied along the inter-planar direction, where the upper critical field $H_{c2}(T)$ exhibits a pronounced downward curvature followed by saturation at lower temperatures $T$. This last observation is consistent with previous studies indicating that this system is Pauli limited. An analysis of our $H_{c2}(T)$ data using a multiband theory suggests the emergence of the Farrel-Fulde-Larkin-Ovchnikov state at low temperatures. A detailed structural x-ray analysis, reveals no impurity phases but an appreciable degree of mosaicity in as-grown BRST single-crystals which remains unaffected by the annealing process. Energy-dispersive x-ray analysis showed that the annealed samples have a more homogeneous stoichiometric distribution of both Fe and Se with virtually the same content of interstitial Fe as the non-annealed ones. Thus, we conclude that stoichiometric disorder, in contrast to structural disorder, is detrimental to the superconducting phase diagram of this series under high magnetic fields. Finally, a scaling analysis of the fluctuation conductivity in the superconducting critical regime, suggests that the superconducting fluctuations have a two-dimensional character in this system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا