We present a nanoladder geometry that minimizes the mechanical dissipation of ultrasensitive cantilevers. A nanoladder cantilever consists of a lithographically patterned scaffold of rails and rungs with feature size $sim$ 100 nm. Compared to a rectangular beam of the same dimensions, the mass and spring constant of a nanoladder are each reduced by roughly two orders of magnitude. We demonstrate a low force noise of $158 (+62)(-42),$zN and $190 (+42)(-33),$zN in a one-Hz bandwidth for devices made from silicon and diamond, respectively, measured at temperatures between 100--150 mK. As opposed to bottom-up mechanical resonators like nanowires or nanotubes, nanoladder cantilevers can be batch-fabricated using standard lithography, which is a critical factor for applications in scanning force microscopy.