No Arabic abstract
Optical conductivity measurements are combined with density functional theory calculations in order to understand the electrodynamic response of the frustrated Mott insulators Herbertsmithite $mathrm{ZnCu_{3}(OH)_{6}Cl_{2}}$ and the closely-related kagome-lattice compound $mathrm{Y_{3}Cu_{9}(OH)_{19}Cl_{8}}$. We identify these materials as charge-transfer rather than Mott-Hubbard insulators, similar to the high-$T_c$ cuprate parent compounds. The band edge is at 3.3 and 3.6 eV, respectively, establishing the insulating nature of these compounds. Inside the gap, we observe dipole-forbidden local electronic transitions between the Cu $3d$ orbitals in the range 1--2 eV. With the help of textit{ab initio} calculations we demonstrate that the electrodynamic response in these systems is directly related to the role of on-site Coulomb repulsion: while charge-transfer processes have their origin on transitions between the ligand band and the Cu $3d$ upper Hubbard band, textit{local} $d$-$d$ excitations remain rather unaffected by correlations.
Fractons are topological quasiparticles with limited mobility. While there exists a variety of models hosting these excitations, typical fracton systems require rather complicated many-particle interactions. Here, we discuss fracton behavior in the more common physical setting of classical kagome spin models with frustrated two-body interactions only. We investigate systems with different types of elementary spin degrees of freedom (three-state Potts, XY, and Heisenberg spins) which all exhibit characteristic subsystem symmetries and fracton-like excitations. The mobility constraints of isolated fractons and bound fracton pairs in the three-state Potts model are, however, strikingly different compared to the known type-I or type-II fracton models. One may still explain these properties in terms of type-I fracton behavior and construct an effective low-energy tensor gauge theory when considering the system as a 2D cut of a 3D cubic lattice model. Our extensive classical Monte-Carlo simulations further indicate a crossover into a low temperature glassy phase where the system gets trapped in metastable fracton states. Moving on to XY spins, we find that in addition to fractons the system hosts fractional vortex excitations. As a result of the restricted mobility of both types of defects, our classical Monte-Carlo simulations do not indicate a Kosterlitz-Thouless transition but again show a crossover into a glassy low-temperature regime. Finally, the energy barriers associated with fractons vanish in the case of Heisenberg spins, such that defect states may continuously decay into a ground state. These decays, however, exhibit a power-law relaxation behavior which leads to slow equilibration dynamics at low temperatures.
Spin ices are exotic phases of matter characterized by frustrated spins obeying local ice rules, in analogy with the electric dipoles in water ice. In two dimensions, one can similarly define ice rules for in-plane Ising-like spins arranged on a kagome lattice. These ice rules require each triangle plaquette to have a single monopole, and can lead to various unique orders and excitations. Using experimental and theoretical approaches including magnetometry, thermodynamic measurements, neutron scattering and Monte Carlo simulations, we establish HoAgGe as a crystalline (i.e. non-artificial) system that realizes the kagome spin ice state. The system features a variety of partially and fully ordered states and a sequence of field-induced phases at low temperatures, all consistent with the kagome ice rule.
Employing complementary torque magnetometry and electron spin resonance on single crystals of herbertsmithite, the closest realization to date of a quantum kagome antiferromagnet featuring a spin-liquid ground state, we provide novel insight into different contributions to its magnetism. At low temperatures, two distinct types of defects with different magnetic couplings to the kagome spins are found. Surprisingly, their magnetic response contradicts the three-fold symmetry of the ideal kagome lattice, suggesting the presence of a global structural distortion that may be related to the establishment of the spin-liquid ground state.
Measuring the specific heat of herbertsmithite single crystals in high magnetic fields (up to $34$ T) allows us to isolate the low-temperature kagome contribution while shifting away extrinsic Schottky-like contributions. The kagome contribution follows an original power law $C_{p}(Trightarrow0)propto T^{alpha}$ with $alphasim1.5$ and is found field-independent between $28$ and $34$ T for temperatures $1leq Tleq4$ K. These are serious constrains when it comes to replication using low-temperature extrapolations of high-temperature series expansions. We manage to reproduce the experimental observations if about $10$ % of the kagome sites do not contribute. Between $0$ and $34$ T, the computed specific heat has a minute field dependence then supporting an algebraic temperature dependence in zero field, typical of a critical spin liquid ground state. The need for an effective dilution of the kagome planes is discussed and is likely linked to the presence of copper ions on the interplane zinc sites. At very low temperatures and moderate fields, we also report some small field-induced anomalies in the total specific heat and start to elaborate a phase diagram.
Low energy inelastic neutron scattering on single crystals of the kagome spin liquid compound ZnCu3(OD)6Cl2 (Herbertsmithite) reveals antiferromagnetic correlations between impurity spins for energy transfers E < 0.8 meV (~J/20). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wavevectors (1 0 0) and (0 0 3/2), which is consistent with antiferromagnetic correlations between pairs of nearest neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit below the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin-gap (Delta ~ 0.7 meV) in the kagome layers, similar to that recently observed by NMR. The ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides a new avenue for probing intrinsic spin liquid physics.