Do you want to publish a course? Click here

Future Cosmological Constraints from Fast Radio Bursts

111   0   0.0 ( 0 )
 Added by Anthony Walters
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the possible observation of Fast Radio Bursts (FRBs) with planned future radio telescopes, and investigate how well the dispersions and redshifts of these signals might constrain cosmological parameters. We construct mock catalogues of FRB dispersion measure (DM) data and employ Markov Chain Monte Carlo (MCMC) analysis, with which we forecast and compare with existing constraints in the flat $Lambda$CDM model, as well as some popular extensions that include dark energy equation of state and curvature parameters. We find that the scatter in DM observations caused by inhomogeneities in the intergalactic medium (IGM) poses a big challenge to the utility of FRBs as a cosmic probe. Only in the most optimistic case, with a high number of events and low IGM variance, do FRBs aid in improving current constraints. In particular, when FRBs are combined with CMB+BAO+SNe+$H_0$ data, we find the biggest improvement comes in the $Omega_{mathrm b}h^2$ constraint. Also, we find that the dark energy equation of state is poorly constrained, while the constraint on the curvature parameter $Omega_k$, shows some improvement when combined with current constraints. When FRBs are combined with future BAO data from 21cm Intensity Mapping (IM), we find little improvement over the constraints from BAOs alone. However, the inclusion of FRBs introduces an additional parameter constraint, $Omega_{mathrm b}h^2$, which turns out to be comparable to existing constraints. This suggest that FRBs provide valuable information about the cosmological baryon density in the intermediate redshift Universe, independent of high redshift CMB data.



rate research

Read More

209 - Tomonori Totani 2013
Fast radio bursts (FRBs) at cosmological distances have recently been discovered, whose duration is about milliseconds. We argue that the observed short duration is difficult to explain by giant flares of soft gamma-ray repeaters, though their event rate and energetics are consistent with FRBs. Here we discuss binary neutron star (NS-NS) mergers as a possible origin of FRBs. The FRB rate is within the plausible range of NS-NS merger rate and its cosmological evolution, while a large fraction of NS-NS mergers must produce observable FRBs. A likely radiation mechanism is coherent radio emission like radio pulsars, by magnetic braking when magnetic fields of neutron stars are synchronized to binary rotation at the time of coalescence. Magnetic fields of the standard strength (~ 10^{12-13} G) can explain the observed FRB fluxes, if the conversion efficiency from magnetic braking energy loss to radio emission is similar to that of isolated radio pulsars. Corresponding gamma-ray emission is difficult to detect by current or past gamma-ray burst satellites. Since FRBs tell us the exact time of mergers, a correlated search would significantly improve the effective sensitivity of gravitational wave detectors.
Recently, Thornton et al. reported the detection of four fast radio bursts (FRBs). The dispersion measures indicate that the sources of these FRBs are at cosmological distance. Given the large full sky event rate ~ 10^4 sky^-1 day^-1, the FRBs are a promising target for multi-messenger astronomy. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which are produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, emission duration and event rate, can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNe Ia) or X-ray debris disks. Simultaneous detection could test our scenario and probe the progenitors of SNe Ia, and moreover would provide a novel constraint on the cosmological parameters. We strongly encourage future SN and X-ray surveys that follow up FRBs.
99 - Z. J. Zhang , K. Yan , C. M. Li 2020
Fast radio bursts (FRBs) are millisecond-duration radio transients and can be used as a cosmological probe. However, the dispersion measure (DM) contributed by intergalactic medium (IGM) is hard to be distinguished from other components. In this paper, we use the IllustrisTNG simulation to realistically estimate the $DM_{rm IGM}$ up to $zsim 9$. We find $DM_{rm IGM} = 892^{+721}_{-270}$ pc cm$^{-3}$ at $z=1$. The probability distribution of $DM_{rm IGM}$ can be well fitted by a quasi-Gaussian function with a long tail. The tail is caused by the structures along the line of sight in IGM. Subtracting DM contributions from the Milky Way and host galaxy for localized FRBs, the $DM_{rm IGM}$ value is close to the derived $DM_{rm IGM}-z$ relation. We also show the capability to constrain the cosmic reionization history with the $DM_{rm IGM}$ of high-redshift FRBs in the IllustrisTNG universe. The derived $DM_{rm IGM}-z$ relation at high redshifts can be well fitted by a $tanh$ reionization model with the reionization redshift $z=5.95$, which is compatible with the reionization model used by the IllustrisTNG simulation. The $DM_{rm IGM}$ of high-redshift FRBs also provides an independent way to measure the optical depth of cosmic microwave background (CMB). Our result can be used to derive the pseudo-redshifts of non-localized FRBs for $DM_{rm IGM}<4000$ pc cm$^{-3}$.
We propose that the periodic fast radio bursts of FRB 180916.J0158+65 are sourced by axion emission (mass $m_{a} sim 10^{-14}$ eV) from cosmic superstrings. Some of the emitted axions are converted to photons by magnetic fields as they travel along the line of sight to Earth. An impulsive burst of axion emission generates a photon signal typically lasting for milliseconds and varying with frequency in the observed manner. We find a range of parameters in our cosmic string network model consistent with the properties of FRB 180916.J0158+65. We suggest followup gravitational wave observations to test our model.
Fast radio bursts (FRBs) are a mysterious astrophysical phenomenon of bright pulses emitted at radio frequencies, and they are expected to be frequently detected in the future. The dispersion measures of FRBs are related to cosmological parameters, thus FRBs have the potential to be developed into a new cosmological probe if their data can be largely accumulated in the future. In this work, we study the capability of future FRB data to improve cosmological parameter estimation in two dynamical dark energy models. We find that the simulated FRB data can break the parameter degeneracies inherent in the current cosmic microwave background (CMB) data. Therefore, the combination of the CMB and FRB data can significantly improve the constraints on the Hubble constant and dark energy parameters, compared to those using CMB or FRB alone. If 10,000 FRB events with known redshifts are detected in the future, they would perform better than the baryon acoustic oscillation (BAO) data in breaking the parameter degeneracies inherent in the CMB data. We also find that the combination of FRB and gravitational-wave (GW) standard siren data provides an independent low-redshift probe to verify the results from the CMB and BAO data. For the data combination of CMB, GW, and FRB, it is found that the main contribution to the constraints comes from the CMB and GW data, but the inclusion of the FRB data still can evidently improve the constraint on the baryon density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا