Testing Modified Gravity Theories via Wide Binaries and GAIA


Abstract in English

The standard LambdaCDM model based on General Relativity (GR) including cold dark matter (CDM) is very successful at fitting cosmological observations, but recent non-detections of candidate dark matter (DM) particles mean that various modified-gravity theories remain of significant interest. The latter generally involve modifications to GR below a critical acceleration scale $sim 10^{-10} , m , s^{-2}$. Wide-binary (WB) star systems with separations $> 5 , kAU$ provide an interesting test for modified gravity, due to being in or near the low-acceleration regime and presumably containing negligible DM. Here, we explore the prospects for new observations pending from the GAIA spacecraft to provide tests of GR against MOND or TeVes-like theories in a regime only partially explored to date. In particular, we find that a histogram of (3D) binary relative velocities against circular velocity predicted from the (2D) projected separations predicts a rather sharp feature in this distribution for standard gravity, with an 80th (90th) percentile value close to 1.025 (1.14) with rather weak dependence on the eccentricity distribution. However, MOND/TeVeS theories produce a shifted distribution, with a significant increase in these upper percentiles. In MOND-like theories {em without} an external field effect, there are large shifts of order unity. With the external field effect included, the shifts are considerably reduced to $sim 0.04 - 0.08$, but are still potentially detectable statistically given reasonably large samples and good control of contaminants. In principle, followup of GAIA-selected wide binaries with ground-based radial velocities accurate to < 0.03 km/s should be able to produce an interesting new constraint on modified-gravity theories.

Download