No Arabic abstract
This paper aims to propose a two-step approach for day-ahead hourly scheduling in a distribution system operation, which contains two operation costs, the operation cost at substation level and feeder level. In the first step, the objective is to minimize the electric power purchase from the day-ahead market with the stochastic optimization. The historical data of day-ahead hourly electric power consumption is used to provide the forecast results with the forecasting error, which is presented by a chance constraint and formulated into a deterministic form by Gaussian mixture model (GMM). In the second step, the objective is to minimize the system loss. Considering the nonconvexity of the three-phase balanced AC optimal power flow problem in distribution systems, the second-order cone program (SOCP) is used to relax the problem. Then, a distributed optimization approach is built based on the alternating direction method of multiplier (ADMM). The results shows that the validity and effectiveness method.
We pose the aggregators problem as a bilevel model, where the upper level minimizes the total operation costs of the fleet of EVs, while each lower level minimizes the energy available to each vehicle for transportation given a certain charging plan. Thanks to the totally unimodular character of the constraint matrix in the lower-level problems, the model can be mathematically recast as a computationally efficient mixed-integer program that delivers charging schedules that are robust against the uncertain availability of the EVs. Finally, we use synthetic data from the National Household Travel Survey 2017 to analyze the behavior of the EV aggregator from both economic and technical viewpoints and compare it with the results from a deterministic approach.
Chance-constrained optimization (CCO) has been widely used for uncertainty management in power system operation. With the prevalence of wind energy, it becomes possible to consider the wind curtailment as a dispatch variable in CCO. However, the wind curtailment will cause impulse for the uncertainty distribution, yielding challenges for the chance constraints modeling. To deal with that, a data-driven framework is developed. By modeling the wind curtailment as a cap enforced on the wind power output, the proposed framework constructs a Gaussian process (GP) surrogate to describe the relationship between wind curtailment and the chance constraints. This allows us to reformulate the CCO with wind curtailment as a mixed-integer second-order cone programming (MI-SOCP) problem. An error correction strategy is developed by solving a convex linear programming (LP) to improve the modeling accuracy. Case studies performed on the PJM 5-bus and IEEE 118-bus systems demonstrate that the proposed method is capable of accurately accounting the influence of wind curtailment dispatch in CCO.
The problem of time-constrained multi-agent task scheduling and control synthesis is addressed. We assume the existence of a high level plan which consists of a sequence of cooperative tasks, each of which is associated with a deadline and several Quality-of-Service levels. By taking into account the reward and cost of satisfying each task, a novel scheduling problem is formulated and a path synthesis algorithm is proposed. Based on the obtained plan, a distributed hybrid control law is further designed for each agent. Under the condition that only a subset of the agents are aware of the high level plan, it is shown that the proposed controller guarantees the satisfaction of time constraints for each task. A simulation example is given to verify the theoretical results.
The growing use of electric vehicles (EVs) may hinder their integration into the electricity system as well as their efficient operation due to the intrinsic stochasticity associated with their driving patterns. In this work, we assume a profit-maximizer EV-aggregator who participates in the day-ahead electricity market. The aggregator accounts for the technical aspects of each individual EV and the uncertainty in its driving patterns. We propose a hierarchical optimization approach to represent the decision-making of this aggregator. The upper level models the profit-maximizer aggregators decisions on the EV-fleet operation, while a series of lower-level problems computes the worst-case EV availability profiles in terms of battery draining and energy exchange with the market. Then, this problem can be equivalently transformed into a mixed-integer linear single-level equivalent given the totally unimodular character of the constraint matrices of the lower-level problems and their convexity. Finally, we thoroughly analyze the benefits of the hierarchical model compared to the results from stochastic and deterministic models.
A simple nonlinear system modeling algorithm designed to work with limited emph{a priori }knowledge and short data records, is examined. It creates an empirical Volterra series-based model of a system using an $l_{q}$-constrained least squares algorithm with $qgeq 1$. If the system $mleft( cdot right) $ is a continuous and bounded map with a finite memory no longer than some known $tau$, then (for a $D$ parameter model and for a number of measurements $N$) the difference between the resulting model of the system and the best possible theoretical one is guaranteed to be of order $sqrt{N^{-1}ln D}$, even for $Dgeq N$. The performance of models obtained for $q=1,1.5$ and $2$ is tested on the Wiener-Hammerstein benchmark system. The results suggest that the models obtained for $q>1$ are better suited to characterize the nature of the system, while the sparse solutions obtained for $q=1$ yield smaller error values in terms of input-output behavior.