Do you want to publish a course? Click here

VLSI Design of a Nonparametric Equalizer for Massive MU-MIMO

302   0   0.0 ( 0 )
 Added by Christoph Studer
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Linear minimum mean-square error (L-MMSE) equalization is among the most popular methods for data detection in massive multi-user multiple-input multiple-output (MU-MIMO) wireless systems. While L-MMSE equalization enables near-optimal spectral efficiency, accurate knowledge of the signal and noise powers is necessary. Furthermore, corresponding VLSI designs must solve linear systems of equations, which requires high arithmetic precision, exhibits stringent data dependencies, and results in high circuit complexity. This paper proposes the first VLSI design of the NOnParametric Equalizer (NOPE), which avoids knowledge of the transmit signal and noise powers, provably delivers the performance of L-MMSE equalization for massive MU-MIMO systems, and is resilient to numerous system and hardware impairments due to its parameter-free nature. Moreover, NOPE avoids computation of a matrix inverse and only requires hardware-friendly matrix-vector multiplications. To showcase the practical advantages of NOPE, we propose a parallel VLSI architecture and provide synthesis results in 28nm CMOS. We demonstrate that NOPE performs on par with existing data detectors for massive MU-MIMO that require accurate knowledge of the signal and noise powers.



rate research

Read More

235 - An-An Lu , Xiqi Gao , 2020
In this paper, we investigate the robust linear precoder design for three dimensional (3D) massive multi-input multi-output (MIMO) downlink with uniform planar array (UPA) and imperfect channel state information (CSI). In practical massive MIMO with UPAs, the number of antennas in each column or row is usually limited. The straightforward extension of the conventional DFT based beam domain channel model widely used in massive MIMO with uniform linear arrays (ULAs) can not apply. To overcome this issue, we establish a new beam domain channel model by using sampled steering vectors. Then, a novel method to obtain the beam domain channel power matrices and the instantaneous beam domain channel coefficients is proposed, and an a posteriori beam domain channel model which includes the channel aging and the spatial correlation is established. On the basis of the a posteriori channel model, we consider the robust precoder design with the expected weighted sum-rate maximization under a total power constraint. By viewing the power constraint as a Riemannian manifold, we transform the constrained optimization problem into an unconstrained optimization problem on the Riemannian manifold. Then, we derive an iterative algorithm to obtain the optimal precoders by setting the Riemannian gradient of the objective function to zero. Furthermore, we propose a low complexity robust precoder design by replacing the expected rates in the objective function with their upper bounds. Simulation results show that the proposed precoders can achieve significant performance gain than the widely used regularized zero forcing (RZF) precoder and signal to leakage noise ratio (SLNR) precoder.
We study the impact of hardware impairments at the base station (BS) of an orthogonal frequency-division multiplexing (OFDM)-based massive multiuser (MU) multiple-input multiple-output (MIMO) uplink system. We leverage Bussgangs theorem to develop accurate models for the distortions caused by nonlinear low-noise amplifiers, local oscillators with phase noise, and oversampling finite-resolution analog-to-digital converters. By combining the individual effects of these hardware models, we obtain a composite model for the BS-side distortion caused by nonideal hardware that takes into account its inherent correlation in time, frequency, and across antennas. We use this composite model to analyze the impact of BS-side hardware impairments on the performance of realistic massive MU-MIMO-OFDM uplink systems.
We consider the problem of channel estimation for uplink multiuser massive MIMO systems, where, in order to significantly reduce the hardware cost and power consumption, one-bit analog-to-digital converters (ADCs) are used at the base station (BS) to quantize the received signal. Channel estimation for one-bit massive MIMO systems is challenging due to the severe distortion caused by the coarse quantization. It was shown in previous studies that an extremely long training sequence is required to attain an acceptable performance. In this paper, we study the problem of optimal one-bit quantization design for channel estimation in one-bit massive MIMO systems. Our analysis reveals that, if the quantization thresholds are optimally devised, using one-bit ADCs can achieve an estimation error close to (with an increase by a factor of $pi/2$) that of an ideal estimator which has access to the unquantized data. The optimal quantization thresholds, however, are dependent on the unknown channel parameters. To cope with this difficulty, we propose an adaptive quantization (AQ) approach in which the thresholds are adaptively adjusted in a way such that the thresholds converge to the optimal thresholds, and a random quantization (RQ) scheme which randomly generate a set of nonidentical thresholds based on some statistical prior knowledge of the channel. Simulation results show that, our proposed AQ and RQ schemes, owing to their wisely devised thresholds, present a significant performance improvement over the conventional fixed quantization scheme that uses a fixed (typically zero) threshold, and meanwhile achieve a substantial training overhead reduction for channel estimation. In particular, even with a moderate number of pilot symbols (about 5 times the number of users), the AQ scheme can provide an achievable rate close to that of the perfect channel state information (CSI) case.
Large-scale MIMO systems are well known for their advantages in communications, but they also have the potential for providing very accurate localization thanks to their high angular resolution. A difficult problem arising indoors and outdoors is localizing users over multipath channels. Localization based on angle of arrival (AOA) generally involves a two-step procedure, where signals are first processed to obtain a users AOA at different base stations, followed by triangulation to determine the users position. In the presence of multipath, the performance of these methods is greatly degraded due to the inability to correctly detect and/or estimate the AOA of the line-of-sight (LOS) paths. To counter the limitations of this two-step procedure which is inherently sub-optimal, we propose a direct localization approach in which the position of a user is localized by jointly processing the observations obtained at distributed massive MIMO base stations. Our approach is based on a novel compressed sensing framework that exploits channel properties to distinguish LOS from non-LOS signal paths, and leads to improved performance results compared to previous existing methods.
We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The covariance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا