Geometric effects in the effective-mass theory and topological optical superlattices


Abstract in English

Cold atoms tailored by an optical lattice have become a fascinating arena for simulating quantum physics. In this area, one important and challenging problem is creating effective spin-orbit coupling (SOC), especially for fashioning a cold atomic gas into a topological phase, for which prevailing approaches mainly rely on the Raman coupling between the atomic internal states and a laser field. Herein, a strategy for realizing effective SOC is proposed by exploiting the geometric effects in the effective-mass theory, without resorting to internal atomic states. It is shown that the geometry of Bloch states can have nontrivial effects on the wave-mechanical states under external fields, leading to effective SOC and an effective Darwin term, which have been neglected in the standard effective-mass approximation. It is demonstrated that these relativisticlike effects can be employed to introduce effective SOC in a two-dimensional optical superlattice, and induce a nontrivial topological phase.

Download