Do you want to publish a course? Click here

Are GANs Created Equal? A Large-Scale Study

206   0   0.0 ( 0 )
 Added by Mario Lucic
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Generative adversarial networks (GAN) are a powerful subclass of generative models. Despite a very rich research activity leading to numerous interesting GAN algorithms, it is still very hard to assess which algorithm(s) perform better than others. We conduct a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some limitations of the current metrics, we also propose several data sets on which precision and recall can be computed. Our experimental results suggest that future GAN research should be based on more systematic and objective evaluation procedures. Finally, we did not find evidence that any of the tested algorithms consistently outperforms the non-saturating GAN introduced in cite{goodfellow2014generative}.



rate research

Read More

Self-supervised learning has recently begun to rival supervised learning on computer vision tasks. Many of the recent approaches have been based on contrastive instance discrimination (CID), in which the network is trained to recognize two augment
284 - Svetlin Tassev 2013
We present a pedagogical systematic investigation of the accuracy of Eulerian and Lagrangian perturbation theories of large-scale structure. We show that significant differences exist between them especially when trying to model the Baryon Acoustic Oscillations (BAO). We find that the best available model of the BAO in real space is the Zeldovich Approximation (ZA), giving an accuracy of <~3% at redshift of z=0 in modelling the matter 2-pt function around the acoustic peak. All corrections to the ZA around the BAO scale are perfectly perturbative in real space. Any attempt to achieve better precision requires calibrating the theory to simulations because of the need to renormalize those corrections. In contrast, theories which do not fully preserve the ZA as their solution, receive O(1) corrections around the acoustic peak in real space at z=0, and are thus of suspicious convergence at low redshift around the BAO. As an example, we find that a similar accuracy of 3% for the acoustic peak is achieved by Eulerian Standard Perturbation Theory (SPT) at linear order only at z~4. Thus even when SPT is perturbative, one needs to include loop corrections for z<~4 in real space. In Fourier space, all models perform similarly, and are controlled by the overdensity amplitude, thus recovering standard results. However, that comes at a price. Real space cleanly separates the BAO signal from non-linear dynamics. In contrast, Fourier space mixes signal from short mildly non-linear scales with the linear signal from the BAO to the level that non-linear contributions from short scales dominate. Therefore, one has little hope in constructing a systematic theory for the BAO in Fourier space.
126 - Shijie Wu , Mark Dredze 2020
Multilingual BERT (mBERT) trained on 104 languages has shown surprisingly good cross-lingual performance on several NLP tasks, even without explicit cross-lingual signals. However, these evaluations have focused on cross-lingual transfer with high-resource languages, covering only a third of the languages covered by mBERT. We explore how mBERT performs on a much wider set of languages, focusing on the quality of representation for low-resource languages, measured by within-language performance. We consider three tasks: Named Entity Recognition (99 languages), Part-of-speech Tagging, and Dependency Parsing (54 languages each). mBERT does better than or comparable to baselines on high resource languages but does much worse for low resource languages. Furthermore, monolingual BERT models for these languages do even worse. Paired with similar languages, the performance gap between monolingual BERT and mBERT can be narrowed. We find that better models for low resource languages require more efficient pretraining techniques or more data.
Pseudo-labeling is a key component in semi-supervised learning (SSL). It relies on iteratively using the model to generate artificial labels for the unlabeled data to train against. A common property among its various methods is that they only rely on the models prediction to make labeling decisions without considering any prior knowledge about the visual similarity among the classes. In this paper, we demonstrate that this degrades the quality of pseudo-labeling as it poorly represents visually similar classes in the pool of pseudo-labeled data. We propose SemCo, a method which leverages label semantics and co-training to address this problem. We train two classifiers with two different views of the class labels: one classifier uses the one-hot view of the labels and disregards any potential similarity among the classes, while the other uses a distributed view of the labels and groups potentially similar classes together. We then co-train the two classifiers to learn based on their disagreements. We show that our method achieves state-of-the-art performance across various SSL tasks including 5.6% accuracy improvement on Mini-ImageNet dataset with 1000 labeled examples. We also show that our method requires smaller batch size and fewer training iterations to reach its best performance. We make our code available at https://github.com/islam-nassar/semco.
Generative adversarial networks (GANs) are a class of deep generative models which aim to learn a target distribution in an unsupervised fashion. While they were successfully applied to many problems, training a GAN is a notoriously challenging task and requires a significant number of hyperparameter tuning, neural architecture engineering, and a non-trivial amount of tricks. The success in many practical applications coupled with the lack of a measure to quantify the failure modes of GANs resulted in a plethora of proposed losses, regularization and normalization schemes, as well as neural architectures. In this work we take a sober view of the current state of GANs from a practical perspective. We discuss and evaluate common pitfalls and reproducibility issues, open-source our code on Github, and provide pre-trained models on TensorFlow Hub.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا