Integrable time-dependent quantum Hamiltonians


Abstract in English

We formulate a set of conditions under which dynamics of a time-dependent quantum Hamiltonian are integrable. The main requirement is the existence of a nonabelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time-dependence into various quantum integrable models, so that the resulting non-stationary Schrodinger equation is exactly solvable. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.

Download