Theory of coherent quantum phase-slips in Josephson junction chains with periodic spatial modulations


Abstract in English

We study coherent quantum phase-slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schon modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.

Download