Do you want to publish a course? Click here

Real-time observation of the coherent transition to a metastable emergent state in 1T-TaS$_2$

101   0   0.0 ( 0 )
 Added by Jan Ravnik
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The transition to a hidden metastable state in 1T-TaS2 is investigated in real time using coherent time-resolved femtosecond spectroscopy. Relying on spectral differences between phonon modes in the equilibrium states and in the metastable state, and temperature-tuning the metastable state lifetime, we perform stroboscopic measurements of the electronic response and switching of coherent oscillation frequency through the transition. Very fast coherent switching of the collective mode frequency is observed (400 fs), comparable to the electronic timescale (300 fs). A slower, 4.7 ps process is attributed to lattice relaxation. The observations are described well by a fast electronic band structure transformation into the metastable state, consistent with a topological transition.



rate research

Read More

122 - Y. D. Wang , W. L. Yao , Z. M. Xin 2020
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics that support a quantum spin liquid state.Here, we determine the electronic and structural properties of 1T-TaS$_2$ using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2$pi$/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS$_2$ is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS$_2$ only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the materials electronic properties.
110 - A. Ribak , I. Silber , C. Baines 2017
1T-TaS$_2$ is a layered transition metal dichalgeonide with a very rich phase diagram. At T=180K it undergoes a metal to Mott insulator transition. Mott insulators usually display anti-ferromagnetic ordering in the insulating phase but 1T-TaS$_2$ was never shown to order magnetically. In this letter we show that 1T-TaS$_2$ has a large paramagnetic contribution to the magnetic susceptibility but it does not show any sign of magnetic ordering or freezing down to 20mK, as probed by $mu$SR, possibly indicating a quantum spin liquid ground state. Although 1T-TaS$_2$ exhibits a strong resistive behavior both in and out-of plane at low temperatures we find a linear term in the heat capacity suggesting the existence of a Fermi-surface, which has an anomalously strong magnetic field dependence.
We investigate the low-temperature charge-density-wave (CDW) state of bulk TaS$_2$ with a fully self-consistent DFT+U approach, over which the controversy has remained unresolved regarding the out-of-plane metallic band. By examining the innate structure of the Hubbard U potential, we reveal that the conventional use of atomic-orbital basis could seriously misevaluate the electron correlation in the CDW state. By adopting a generalized basis, covering the whole David star, we successfully reproduce the Mott insulating nature with the layer-by-layer antiferromagnetic order. Similar consideration should be applied for description of the electron correlation in molecular solid.
1T-TaS$_2$ is known for its remarkably complex phase diagram and its unique long-lived metastable hidden (H) state. Recently, a novel metastable state has been discovered using higher fluences for photoexcitation than in the case of the H state. The state has been dubbed as amorphous (A) due to its similarity to glass. Expanding on the work of Brazovskii and Karpov, we show that the A state can be successfully modelled with classical interacting polarons on a two-dimensional hexagonal lattice. We have found that the polaron configuration of the A state corresponds to a frustrated screened Coulomb system, where there is no order-disorder phase transition.
New theoretical proposals and experimental findings on transition metal dichalcogenide 1T-TaS$_2$ have revived interests in its possible Mott insulating state. We perform a comprehensive scanning tunneling microscopy and spectroscopy experiment on different single-step areas in pristine 1T-TaS$_2$. After accurately determining the relative displacement of Star-of-David super-lattices in two layers, we find different stacking orders corresponding to the different electronic states measured on the upper terrace. The center-to-center stacking corresponds to the universal large gap, while other stacking orders correspond to a reduced or suppressed gap in the electronic spectrum. Adopting a unified model, we conclude that the universal large gap is a correlation-induced Mott gap from the single-layer property. Our work provides more evidence about the surface electronic state and deepens our understanding of the Mott insulating state in 1T-TaS$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا