Photoinduced $frac{1}{2}frac{e^2}{h}$ and $frac{3}{2}frac{e^2}{h}$ conductance plateaus in topological insulator-superconductor heterostructures


Abstract in English

The past few years have witnessed increased attention to the quest for Majorana-like excitations in the condensed matter community. As a promising candidate in this race, the one-dimensional chiral Majorana edge mode (CMEM) in topological insulator-superconductor heterostructures has gathered renewed interests during recent months after an experimental breakthrough. In this paper, we study the quantum transport of topological insulator-superconductor hybrid devices subject to light-matter interaction or general time-periodic modulation. We report half-integer quantized conductance plateaus at $frac{1}{2}frac{e^2}{h}$ and $frac{3}{2}frac{e^2}{h}$ upon applying the so-called sum rule in the theory of quantum transport in Floquet topological matter. In particular, in a photoinduced topological superconductor sandwiched between two Floquet Chern insulators, it is found that for each Floquet sideband, the CMEM admits equal probability for normal transmission and local Andreev reflection over a wide range of parameter regimes, yielding half-integer quantized plateaus that resist static and time-periodic disorder. The $frac{3}{2}frac{e^2}{h}$ plateau has not yet been computationally or experimentally observed in any other superconducting system, and indicates the possibility to simultaneously create and manipulate multiple pairs of CMEMs by light. The robust half-quantized conductance plateaus, due to CMEMs at quasienergies zero or half the driving frequency, are both fascinating and subtle because they only emerge after a summation over contributions from all Floquet sidebands. Such a distinctive transport signature can thus serve as a hallmark of photoinduced CMEMs in topological insulator-superconductor junctions.

Download