Do you want to publish a course? Click here

Recoil effect on the g factor of Li-like ions

114   0   0.0 ( 0 )
 Added by V. M. Shabaev
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nuclear recoil effect on the $g$ factor of Li-like ions is evaluated. The one-electron recoil contribution is treated within the framework of the rigorous QED approach to first order in the electron-to-nucleus mass ratio $m/M$ and to all orders in the parameter $alpha Z$. These calculations are performed in a range $Z=3-92$. The two-electron recoil term is calculated for low- and middle-$Z$ ions within the Breit approximation using a four-component approach. The results for the two-electron recoil part obtained in the paper strongly disagree with the previous calculations performed using an effective two-component Hamiltonian. The obtained value for the recoil effect is used to calculate the isotope shift of the $g$ factor of Li-like $^{A}$Ca$^{17+}$ with $A=40$ and $A=48$ which was recently measured. It is found that the new theoretical value for the isotope shift is closer to the experimental one than the previously obtained value.



rate research

Read More

The nuclear recoil correction to the g factor of boronlike ions is evaluated within the lowest-order relativistic (Breit) approximation. The interelectronic-interaction effects are taken into account to the first order of the perturbation theory in 1/Z. Higher orders in 1/Z are partly accounted for by means of the effective screening potential. The most accurate up-to-date values of this contribution are presented for the ions in the range Z=10-20.
238 - V. A. Yerokhin , C. H. Keitel , 2021
We report calculations of QED corrections to the $g$ factor of Li-like ions induced by the exchange of two virtual photons between the electrons. The calculations are performed within QED theory to all orders in the nuclear binding strength parameter $Zalpha$, where $Z$ is the nuclear charge number and $alpha$ is the fine-structure constant. In the region of low nuclear charges we compare results from three different methods: QED, relativistic many-body perturbation theory, and nonrelativistic QED. All three methods are shown to yield consistent results. With our calculations we improve the accuracy of the theoretical predictions of the $g$ factor of the ground state of Li-like carbon and oxygen by about an order of magnitude. Our theoretical results agree with those from previous calculations but differ by 3-4 standard deviations from the experimental results available for silicon and calcium.
QED corrections to the $g$ factor of Li-like and B-like ions in a wide range of nuclear charges are presented. Many-electron contributions as well as radiative effects on the one-loop level are calculated. Contributions resulting from the interelectronic interaction, the self-energy effect, and most of the terms of the vacuum-polarization effect are evaluated to all orders in the nuclear coupling strength $Zalpha$. Uncertainties resulting from nuclear size effects, numerical computations, and uncalculated effects are discussed.
We report an investigation of the self-energy screening effects for the $g$ factor of the ground state of Li-like ions. The leading screening contribution of the relative order $1/Z$ is calculated to all orders in the binding nuclear strength parameter $Zalpha$ (where $Z$ is the nuclear charge number and $alpha$ is the fine-structure constant). We also extend the known results for the $Zalpha$ expansion of the QED screening correction by deriving the leading logarithmic contribution of order $alpha^5lnalpha$ and obtaining approximate results for the $alpha^5$ and $alpha^6$ contributions. The comparison of the two approaches yields a stringent check of consistency of the two calculations and allows us to obtain improved estimations of the higher-order screening effects.
We investigate electron-correlation effects in the $g$-factor of the ground state of Li-like ions. Our calculations are performed within the nonrelativistic quantum electrodynamics (NRQED) expansion up to two leading orders in the fine-structure constant $alpha$, $alpha^2$ and $alpha^3$. The dependence of the NRQED results on the nuclear charge number $Z$ is studied and the individual $1/Z$-expansion contributions are identified. Combining the obtained data with the results of the all-order (in $Zalpha$) calculations performed within the $1/Z$ expansion, we derive the unified theoretical predictions for the $g$-factor of light Li-like ions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا