Brillouin light scattering by magnetic quasi-vortices in cavity optomagnonics


Abstract in English

A ferromagnetic sphere can support textit{optical vortices} in forms of whispering gallery modes and textit{magnetic quasi-vortices} in forms of magnetostatic modes with non-trivial spin textures. These vortices can be characterized by their orbital angular momenta. We experimentally investigate Brillouin scattering of photons in the whispering gallery modes by magnons in the magnetostatic modes, zeroing in on the exchange of the orbital angular momenta between the optical vortices and the magnetic quasi-vortices. We find that the conservation of the orbital angular momentum results in different nonreciprocal behaviors in the Brillouin light scattering. New avenues for chiral optics and opto-spintronics can be opened up by taking the orbital angular momenta as a new degree of freedom for cavity optomagnonics.

Download