Do you want to publish a course? Click here

Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources

68   0   0.0 ( 0 )
 Added by Liang Cao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the host galaxy properties of stellar binary black hole (SBBH) mergers is important for revealing the origin of the SBBH gravitational-wave sources detected by advanced LIGO and helpful for identifying their electromagnetic counterparts. Here we present a comprehensive analysis of the host galaxy properties of SBBHs by implementing semi-analytical recipes for SBBH formation and merger into cosmological galaxy formation model. If the time delay between SBBH formation and merger ranges from $la$,Gyr to the Hubble time, SBBH mergers at redshift $zla0.3$ occur preferentially in big galaxies with stellar mass $M_*ga2times10^{10}msun$ and metallicities $Z$ peaking at $sim0.6Z_odot$. However, the host galaxy stellar mass distribution of heavy SBBH mergers ($M_{bulletbullet}ga50msun$) is bimodal with one peak at $sim10^9msun$ and the other peak at $sim2times10^{10}msun$. The contribution fraction from host galaxies with $Zla0.2Z_odot$ to heavy mergers is much larger than that to less heavy mergers. If SBBHs were formed in the early universe (e.g., $z>6$), their mergers detected at $zla0.3$ occur preferentially in even more massive galaxies with $M_*>3times10^{10}msun$ and in galaxies with metallicities mostly $ga0.2Z_odot$ and peaking at $Zsim0.6Z_odot$, due to later cosmic assembly and enrichment of their host galaxies. SBBH mergers at $zla0.3$ mainly occur in spiral galaxies, but the fraction of SBBH mergers occur in elliptical galaxies can be significant if those SBBHs were formed in the early universe; and about two thirds of those mergers occur in the central galaxies of dark matter halos. We also present results on the host galaxy properties of SBBH mergers at higher redshift.



rate research

Read More

We review theoretical findings, astrophysical modeling, and current gravitational-wave evidence of hierarchical stellar-mass black-hole mergers. While most of the compact binary mergers detected by LIGO and Virgo are expected to consist of first-generation black holes formed from the collapse of stars, others might instead be of second (or higher) generation, containing the remnants of previous black-hole mergers. Such a subpopulation of hierarchically assembled black holes presents distinctive gravitational-wave signatures, namely higher masses, possibly within the pair-instability mass gap, and dimensionless spins clustered at the characteristic value of $sim$0.7. In order to produce hierarchical mergers, astrophysical environments need to overcome the relativistic recoils imparted to black-hole merger remnants, a condition which prefers hosts with escape speeds $gtrsim$ 100 km/s. Promising locations for efficient production of hierarchical mergers include nuclear star clusters and accretion disks surrounding active galactic nuclei, though environments that are less efficient at retaining merger products such as globular clusters may still contribute significantly to the detectable population of repeated mergers. While GW190521 is the single most promising hierarchical-merger candidate to date, constraints coming from large population analyses are becoming increasingly more powerful.
Gravitational waves produced from the merger of binary neutron stars (BNSs) are accompanied by electromagnetic counterparts, making it possible to identify the associated host galaxy. We explore how properties of the host galaxies relate to the astrophysical processes leading to the mergers. It is thought that the BNS merger rate within a galaxy at a given epoch depends primarily on the galaxys star-formation history as well as the underlying merger time-delay distribution of the binary systems. The stellar history of a galaxy, meanwhile, depends on the cosmological evolution of the galaxy through time, and is tied to the growth of structure in the Universe. We study the hosts of BNS mergers in the context of structure formation by populating the Universe Machine simulations with gravitational-wave events~ according to a simple time-delay model. We find that different time-delay distributions predict different properties of the associated host galaxies, including the distributions of stellar mass, star-formation rate, halo mass, and local and large-scale clustering of hosts. BNSs that merge today with short delay times prefer to be in hosts that have high star-formation rates, while those with long delay times live in dense regions within massive halos that have low star formation. We show that with ${mathcal O}(10)$ events from current gravitational-wave detector networks, it is possible to make preliminary distinctions between formation channels which trace stellar mass, halo mass, or star-formation rate. We also find that strategies to follow up gravitational-wave events with electromagnetic telescopes can be significantly optimized using the clustering properties of their hosts.
104 - E. J. Howell , M. L. Chan , Q. Chu 2017
The detection of three black hole binary coalescence events by Advanced LIGO allows the science benefits of future detectors to be evaluated. In this paper we report the science benefits of one or two 8km arm length detectors based on the doubling of key parameters in an advanced LIGO type detector, combined with realisable enhancements. It is shown that the total detection rate for sources similar to those already detected, would increase to $sim$ 10$^{3}$--10$^{5}$ per year. Within 0.4Gpc we find that around 10 of these events would be localizable to within $sim 10^{-1}$ deg$^2$. This is sufficient to make unique associations or to rule out a direct association with the brightest galaxies in optical surveys (at r-band magnitudes of 17 or above) or for deeper limits (down to r-band magnitudes of 20) yield statistically significant associations. The combination of angular resolution and event rate would benefit precision testing of formation models, cosmic evolution and cosmological studies.
We study the formation of intermediate-mass ratio inspirals (IMRIs) triggered by the interactions between two stellar black holes (BHs) and an intermediate-mass BH (IMBH) inhabiting the centre of a dense star cluster. We exploit $N$-body models varying the IMBH mass, the stellar BH mass spectrum, and the star cluster properties. These simulations are coupled with a semi-analytic procedure to characterise the evolution of the remnant IMBH. The IMRIs formation probability attains values $sim 5-50%$, with larger values corresponding to larger IMBH masses. IMRIs map out the stellar BH mass spectrum, thus they might be used to unravel BH populations in star clusters harboring an IMBH. After the IMRI phase, an IMBH initially nearly maximal(almost non-rotating) tends to decrease(increase) its spin. If IMBHs grow mostly via repeated IMRIs, we show that only IMBH seeds sufficiently massive ($M_{rm seed} > 300$ M$_odot$) can grow up to $M_{rm imbh} >10^3$ M$_odot$ in dense globular clusters. Assuming that these seeds form at a redshift $zsim 2-6$, we find that around $1-5%$ of them would reach masses $sim 500-1500$ M$_odot$ at redshift $z=0$ and would exhibit low-spins, $S_{rm imbh} < 0.2$. Measuring the mass and spin of IMBHs involved in IMRIs could help unravelling their formation mechanisms. We show that LISA can detect IMBHs in Milky Way globular clusters with a signal-to-noise ratio SNR$=10-100$, or in the Large Magellanic Cloud with an SNR$=8-40$. We provide the IMRIs merger rate for LIGO ($Gamma_{rm LIG} = 0.003-1.6$ yr$^{-1}$), LISA ($Gamma_{rm LIS} = 0.02-60$ yr$^{-1}$), ET ($Gamma_{rm ET} = 1-600$ yr$^{-1}$), and DECIGO ($Gamma_{rm DEC} = 6-3000$ yr$^{-1}$). Our simulations show that IMRIs mass and spin encode crucial insights on the mechanisms that regulate IMBH formation and that the synergy among different detectors would enable us to fully unveil them. (Abridged)
When formed through dynamical interactions, stellar-mass binary black holes may retain eccentric orbits ($e>0.1$ at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically-formed binaries from isolated binary black hole mergers. Current template-based gravitational-wave searches do not use waveform models associated to eccentric orbits, rendering the search less efficient to eccentric binary systems. Here we present results of a search for binary black hole mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. The search uses minimal assumptions on the morphology of the transient gravitational waveform. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا