Photon recoil momentum in a Bose-Einstein condensate of a dilute gas


Abstract in English

We develop a minimal microscopic model to describe a two-pulse-Ramsay-interferometer-based scheme of measurement of the photon recoil momentum in a Bose-Einstein condensate of a dilute gas [Campbell et al., Phys. Rev. Lett. 94, 170403 (2005)]. We exploit the truncated coupled Maxwell-Schroedinger equations to elaborate the problem. Our approach provides a theoretical tool to reproduce essential features of the experimental results. Additionally, we enable to calculate the quantum-mechanical mean value of the recoil momentum and its statistical distribution that provides a detailed information about the recoil event.

Download