Do you want to publish a course? Click here

Genetic noise mechanism for power-law switching in bacterial flagellar motors

179   0   0.0 ( 0 )
 Publication date 2017
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

Switching of the direction of flagella rotations is the key control mechanism governing the chemotactic activity of E. coli and many other bacteria. Power-law distributions of switching times are most peculiar because their emergence cannot be deduced from simple thermodynamic arguments. Recently it was suggested that by adding finite-time correlations into Gaussian fluctuations regulating the energy height of barrier between the two rotation states, one can generate a power-law switching statistics. By using a simple model of a regulatory pathway, we demonstrate that the required amount of correlated `noise can be produced by finite number fluctuations of reacting protein molecules, a condition common to the intracellular chemistry. The corresponding power-law exponent appears as a tunable characteristic controlled by parameters of the regulatory pathway network such as equilibrium number of molecules, sensitivities, and the characteristic relaxation time.



rate research

Read More

125 - Ziqing Wang , Ming Li 2011
Membrane tubes are important elements for living cells to organize many functions. Experiments have found that membrane tube can be extracted from giant lipid vesicles by a group of kinesin. How these motors cooperate in extracting the fluid-like membrane tube is still unclear. In this paper, we propose a new cooperation mechanism called two-track-dumbbell model, in which kinesin is regarded as a dumbbell with an end (tail domain) tightly bound onto the fluid-like membrane and the other end (head domain) stepping on or unbinding from the microtubule. Taking account of the elasticity of kinesin molecule and the exclude volume effect of both the head domain and the tail domain of kinesin, which are not considered in previous models, we simulate the growth process of the membrane tube pulled by kinesin motors. Our results indicate that motors along a single microtubule protofilament can generate enough force to extract membrane tubes from vesicles, and the average number of motors pulling the tube is about 8~9. These results are quite different from previous studies (Ref. cite{camp.08}), and further experimental tests are necessary to elucidate the cooperation mechanism.
Organelles of optimum size are crucial for proper functioning of a living cell. The cell employs various mechanisms for actively sensing and controlling the size of its organelles. Recently Bauer et al have opened a new research frontier in the field of subcellular size control by shedding light on the noise and fluctuations of organelles of controlled size. Taking eukaryotic flagellum as a model organelle, which is quite popular for such studies because of its linear geometry and dynamic nature, Bauer et al have analysed the nature of fluctuations of its length. Here we summarize the key questions and the fundamental importance of the recent developments. Although our attention is focussed here mainly on the experimental and theoretical works on eukaryotic flagellum, the ideas are general and applicable to wide varieties of cell organelle.
241 - J. C. Phillips 2021
Intelligence is often discussed in terms of neural networks in the cerebral cortex, whose evolution has presumably been influenced by Darwinian selection. Here we present molecular evidence that one of the many kinesin motors, Kif14, has evolved to exhibit special features in its amino acid sequence that could have evolved to improve neural networks. The improvement is quantified by comparison of Kif14 sequences for 12 species. The special feature is level sets of hydrophobic extrema in water wave profiles based on several hydropathic scales. The most effective scale is a new one based on fractals, indicative of approach of globular curvatures to self-organized criticality.
Biological cells are often found to sense their chemical environment near the single-molecule detection limit. Surprisingly, this precision is higher than simple estimates of the fundamental physical limit, hinting towards active sensing strategies. In this work, we analyse the effect of cell memory, e.g. from slow biochemical processes, on the precision of sensing by cell-surface receptors. We derive analytical formulas, which show that memory significantly improves sensing in weakly fluctuating environments. However, surprisingly when memory is adjusted dynamically, the precision is always improved, even in strongly fluctuating environments. In support of this prediction we quantify the directional biases in chemotactic Dictyostelium discoideum cells in a flow chamber with alternating chemical gradients. The strong similarities between cell sensing and control engineering suggest universal problem-solving strategies of living matter.
In a classic paper, Edward Purcell analysed the dynamics of flagellated bacterial swimmers and derived a geometrical relationship which optimizes the propulsion efficiency. Experimental measurements for wild-type bacterial species E. coli have revealed that they closely satisfy this geometric optimality. However, the dependence of the flagellar motor speed on the load and more generally the role of the torque-speed characteristics of the flagellar motor is not considered in Purcells original analysis. Here we derive a tuned condition representing a match between the flagella geometry and the torque-speed characteristics of the flagellar motor to maximize the bacterial swimming speed for a given load. This condition is independent of the geometric optimality condition derived by Purcell and interestingly this condition is not satisfied by wild-type E. coli which swim 2-3 times slower than the maximum possible speed given the amount of available motor torque. Our analysis also reveals the existence of an anomalous propulsion regime, where the swim speed increases with increasing load (drag). Finally, we present experimental data which supports our analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا