Do you want to publish a course? Click here

The Stochastic Firefighter Problem

47   0   0.0 ( 0 )
 Added by Guy Tennenholtz
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The dynamics of infectious diseases spread is crucial in determining their risk and offering ways to contain them. We study sequential vaccination of individuals in networks. In the original (deterministic) version of the Firefighter problem, a fire breaks out at some node of a given graph. At each time step, b nodes can be protected by a firefighter and then the fire spreads to all unprotected neighbors of the nodes on fire. The process ends when the fire can no longer spread. We extend the Firefighter problem to a probabilistic setting, where the infection is stochastic. We devise a simple policy that only vaccinates neighbors of infected nodes and is optimal on regular trees and on general graphs for a sufficiently large budget. We derive methods for calculating upper and lower bounds of the expected number of infected individuals, as well as provide estimates on the budget needed for containment in expectation. We calculate these explicitly on trees, d-dimensional grids, and ErdH{o}s R{e}nyi graphs. Finally, we construct a state-dependent budget allocation strategy and demonstrate its superiority over constant budget allocation on real networks following a first order acquaintance vaccination policy.



rate research

Read More

We introduce the $L_p$ Traveling Salesman Problem ($L_p$-TSP), given by an origin, a set of destinations, and underlying distances. The objective is to schedule a destination visit sequence for a traveler of unit speed to minimize the Minkowski $p$-norm of the resulting vector of visit/service times. For $p = infty$ the problem becomes a path variant of the TSP, and for $p = 1$ it defines the Traveling Repairman Problem (TRP), both at the center of classical combinatorial optimization. We provide an approximation preserving polynomial-time reduction of $L_p$-TSP to the segmented-TSP Problem [Sitters 14] and further study the case of $p = 2$, which we term the Traveling Firefighter Problem (TFP), when the cost due to a delay in service is quadratic in time. We also study the all-norm-TSP problem [Golovin et al. 08], in which the objective is to find a route that is (approximately) optimal with respect to the minimization of any norm of the visit times, and improve corresponding (in)approximability bounds on metric spaces.
We prove that any Cayley graph $G$ with degree $d$ polynomial growth does not satisfy ${f(n)}$-containment for any $f=o(n^{d-2})$. This settles the asymptotic behaviour of the firefighter problem on such graphs as it was known that $Cn^{d-2}$ firefighters are enough, answering and strengthening a conjecture of Develin and Hartke. We also prove that intermediate growth Cayley graphs do not satisfy polynomial containment, and give explicit lower bounds depending on the growth rate of the group. These bounds can be further improved when more geometric information is available, such as for Grigorchuks group.
Stochastic HYPE is a novel process algebra that models stochastic, instantaneous and continuous behaviour. It develops the flow-based approach of the hybrid process algebra HYPE by replacing non-urgent events with events with exponentially-distributed durations and also introduces random resets. The random resets allow for general stochasticity, and in particular allow for the use of event durations drawn from distributions other than the exponential distribution. To account for stochasticity, the semantics of stochastic HYPE target piecewise deterministic Markov processes (PDMPs), via intermediate transition-driven stochastic hybrid automata (TDSHA) in contrast to the hybrid automata used as semantic target for HYPE. Stochastic HYPE models have a specific structure where the controller of a system is separate from the continuous aspect of this system providing separation of concerns and supporting reasoning. A novel equivalence is defined which captures when two models have the same stochastic behaviour (as in stochastic bisimulation), instantaneous behaviour (as in classical bisimulation) and continuous behaviour. These techniques are illustrated via an assembly line example.
59 - Chenyuan He , Yan Wan , 2018
The influence model is a discrete-time stochastic model that succinctly captures the interactions of a network of Markov chains. The model produces a reduced-order representation of the stochastic network, and can be used to describe and tractably analyze probabilistic spatiotemporal spread dynamics, and hence has found broad usage in network applications such as social networks, traffic management, and failure cascades in power systems. This paper provides sufficient and necessary conditions for the identifiability of the influence model, and also develops estimators for the model structure through exploiting the models special properties. In addition, we analyze conditions for the identifiability of the partially observed influence model (POIM), for which not all of the sites can be measured.
In this paper, we study the system identification problem for sparse linear time-invariant systems. We propose a sparsity promoting block-regularized estimator to identify the dynamics of the system with only a limited number of input-state data samples. We characterize the properties of this estimator under high-dimensional scaling, where the growth rate of the system dimension is comparable to or even faster than that of the number of available sample trajectories. In particular, using contemporary results on high-dimensional statistics, we show that the proposed estimator results in a small element-wise error, provided that the number of sample trajectories is above a threshold. This threshold depends polynomially on the size of each block and the number of nonzero elements at different rows of input and state matrices, but only logarithmically on the system dimension. A by-product of this result is that the number of sample trajectories required for sparse system identification is significantly smaller than the dimension of the system. Furthermore, we show that, unlike the recently celebrated least-squares estimators for system identification problems, the method developed in this work is capable of textit{exact recovery} of the underlying sparsity structure of the system with the aforementioned number of data samples. Extensive case studies on synthetically generated systems, physical mass-spring networks, and multi-agent systems are offered to demonstrate the effectiveness of the proposed method.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا