Revisiting Connected Vertex Cover: FPT Algorithms and Lossy Kernels


Abstract in English

The CONNECTED VERTEX COVER problem asks for a vertex cover in a graph that induces a connected subgraph. The problem is known to be fixed-parameter tractable (FPT), and is unlikely to have a polynomial sized kernel (under complexity theoretic assumptions) when parameterized by the solution size. In a recent paper, Lokshtanov et al.[STOC 2017], have shown an $alpha$-approximate kernel for the problem for every $alpha > 1$, in the framework of approximate or lossy kernelization. In this work, we exhibit lossy kernels and FPT algorithms for CONNECTED VERTEX COVER for parameters that are more natural and functions of the input, and in some cases, smaller than the solution size. The parameters we consider are the sizes of a split deletion set, clique deletion set, clique cover, cluster deletion set and chordal deletion set.

Download