No Arabic abstract
The CONNECTED VERTEX COVER problem asks for a vertex cover in a graph that induces a connected subgraph. The problem is known to be fixed-parameter tractable (FPT), and is unlikely to have a polynomial sized kernel (under complexity theoretic assumptions) when parameterized by the solution size. In a recent paper, Lokshtanov et al.[STOC 2017], have shown an $alpha$-approximate kernel for the problem for every $alpha > 1$, in the framework of approximate or lossy kernelization. In this work, we exhibit lossy kernels and FPT algorithms for CONNECTED VERTEX COVER for parameters that are more natural and functions of the input, and in some cases, smaller than the solution size. The parameters we consider are the sizes of a split deletion set, clique deletion set, clique cover, cluster deletion set and chordal deletion set.
We study the recently introduced Connected Feedback Vertex Set (CFVS) problem from the view-point of parameterized algorithms. CFVS is the connected variant of the classical Feedback Vertex Set problem and is defined as follows: given a graph G=(V,E) and an integer k, decide whether there exists a subset F of V, of size at most k, such that G[V F] is a forest and G[F] is connected. We show that Connected Feedback Vertex Set can be solved in time $O(2^{O(k)}n^{O(1)})$ on general graphs and in time $O(2^{O(sqrt{k}log k)}n^{O(1)})$ on graphs excluding a fixed graph H as a minor. Our result on general undirected graphs uses as subroutine, a parameterized algorithm for Group Steiner Tree, a well studied variant of Steiner Tree. We find the algorithm for Group Steiner Tree of independent interest and believe that it will be useful for obtaining parameterized algorithms for other connectivity problems.
We introduce and study two natural generalizations of the Connected VertexCover (VC) problem: the $p$-Edge-Connected and $p$-Vertex-Connected VC problem (where $p geq 2$ is a fixed integer). Like Connected VC, both new VC problems are FPT, but do not admit a polynomial kernel unless $NP subseteq coNP/poly$, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. We obtain an $O(2^{O(pk)}n^{O(1)})$-time algorithm for the $p$-Edge-Connected VC and an $O(2^{O(k^2)}n^{O(1)})$-time algorithm for the $p$-Vertex-Connected VC. Finally, we describe a $2(p+1)$-approximation algorithm for the $p$-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning $p$-vertex/edge-connected subgraph of a $p$-vertex/edge-connected graph obtained independently by Nishizeki and Poljak (1994) and Nagamochi and Ibaraki (1992).
The Connected Vertex Cover problem, where the goal is to compute a minimum set of vertices in a given graph which forms a vertex cover and induces a connected subgraph, is a fundamental combinatorial problem and has received extensive attention in various subdomains of algorithmics. In the area of kernelization, it is known that this problem is unlikely to have efficient preprocessing algorithms, also known as polynomial kernelizations. However, it has been shown in a recent work of Lokshtanov et al. [STOC 2017] that if one considered an appropriate notion of approximate kernelization, then this problem parameterized by the solution size does admit an approximate polynomial kernelization. In fact, Lokhtanov et al. were able to obtain a polynomial size approximate kernelization scheme (PSAKS) for Connected Vertex Cover parameterized by the solution size. A PSAKS is essentially a preprocessing algorithm whose error can be made arbitrarily close to 0. In this paper we revisit this problem, and consider parameters that are strictly smaller than the size of the solution and obtain the first polynomial size approximate kernelization schemes for the Connected Vertex Cover problem when parameterized by the deletion distance of the input graph to the class of cographs, the class of bounded treewidth graphs, and the class of all chordal graphs.
A famous conjecture of Tuza states that the minimum number of edges needed to cover all the triangles in a graph is at most twice the maximum number of edge-disjoint triangles. This conjecture was couched in a broader setting by Aharoni and Zerbib who proposed a hypergraph version of this conjecture, and also studied its implied fraction
We study the generalized min sum set cover (GMSSC) problem, wherein given a collection of hyperedges $E$ with arbitrary covering requirements $k_e$, the goal is to find an ordering of the vertices to minimize the total cover time of the hyperedges; a hyperedge $e$ is considered covered by the first time when $k_e$ many of its vertices appear in the ordering. We give a $4.642$ approximation algorithm for GMSSC, coming close to the best possible bound of $4$, already for the classical special case (with all $k_e=1$) of min sum set cover (MSSC) studied by Feige, Lov{a}sz and Tetali, and improving upon the previous best known bound of $12.4$ due to Im, Sviridenko and van der Zwaan. Our algorithm is based on transforming the LP solution by a suitable kernel and applying randomized rounding. This also gives an LP-based $4$ approximation for MSSC. As part of the analysis of our algorithm, we also derive an inequality on the lower tail of a sum of independent Bernoulli random variables, which might be of independent interest and broader utility. Another well-known special case is the min sum vertex cover (MSVC) problem, in which the input hypergraph is a graph and $k_e = 1$, for every edge. We give a $16/9$ approximation for MSVC, and show a matching integrality gap for the natural LP relaxation. This improves upon the previous best $1.999946$ approximation of Barenholz, Feige and Peleg. (The claimed $1.79$ approximation result of Iwata, Tetali and Tripathi for the MSVC turned out have an unfortunate, seemingly unfixable, mistake in it.) Finally, we revisit MSSC and consider the $ell_p$ norm of cover-time of the hyperedges. Using a dual fitting argument, we show that the natural greedy algorithm achieves tight, up to NP-hardness, approximation guarantees of $(p+1)^{1+1/p}$, for all $pge 1$. For $p=1$, this gives yet another proof of the $4$ approximation for MSSC.