Do you want to publish a course? Click here

Thickness-dependence of the Dzyaloshinskii-Moriya interaction in Co2FeAl ultrathin films: effects of the annealing temperature and the heavy metal material

349   0   0.0 ( 0 )
 Added by Mohamed Belmeguenai
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interfacial Dzyaloshinskii-Moriya interaction (iDMI) has been investigated in Co2FeAl (CFA) ultrathin films of various thicknesses (0.8 nm<tCFA<2 nm) grown on Si substrates, using Pt, W, Ir and MgO buffer or/and capping layers. Vibrating sample magnetometry revealed that magnetization at saturation (Ms) for the Pt and Ir buffered films is higher than the usual Ms of CFA due to the proximity induced magnetization (PIM) in Ir and Pt, estimated to be 19% and 27%, respectively. The presence of PIM in these materials is confirmed using x-ray resonant magnetic reflectivity. Moreover, while no PIM is induced in W, higher PIM is obtained with Pt when it is used as buffer layer rather than capping layer. Brillouin light scattering (BLS) in the Damon-Eshbach geometry has been used to investigate iDMI constants and the perpendicular anisotropy field versus the annealing temperature. The DMI sign has been found to be negative for Pt/CFA and Ir/CFA while it is positive for W/CFA. The thickness dependence of the effective iDMI constant for stacks involving Pt and W shows the existence of two regimes similarly to that of the perpendicular anisotropy constant due to the degradation of the interfaces as the CFA thickness approaches the nanometer. The surface iDMI and anisotropy constants of each stack have been determined for the thickest samples where a linear thickness dependence of the effective iDMI constant and the effective magnetization has been observed. The interface anisotropy and iDMI constants, investigated for Pt/CFA/MgO system, showed different trends with the annealing temperature. The decrease of iDMI constant with increasing annealing temperature is probably due to the electronic structure changes at the interfaces, while the increase of the interface anisotropy constant is coherent the interface quality and disorder enhancement.

rate research

Read More

356 - Xin Ma , Guoqiang Yu , Chi Tang 2017
The Dzyaloshinskii Moriya Interaction (DMI) at the heavy metal (HM) and ferromagnetic metal (FM) interface has been recognized as a key ingredient in spintronic applications. Here we investigate the chemical trend of DMI on the 5d band filling (5d^3~5d^10) of the HM element in HM/CoFeB/MgO multilayer thin films. DMI is quantitatively evaluated by measuring asymmetric spin wave dispersion using Brillouin light scattering. Sign reversal and 20 times modification of the DMI coefficient D have been measured as the 5d HM element is varied. The chemical trend can be qualitatively understood by considering the 5d and 3d bands alignment at the HM/FM interface and the subsequent orbital hybridization around the Fermi level. Furthermore, a positive correlation is observed between DMI and spin mixing conductance at the HM/FM interfaces. Our results provide new insights into the interfacial DMI for designing future spintronic devices.
We have characterized the strength of the interfacial Dyzaloshinskii-Moriya interaction (DMI) in ultrathin perpendicularly magnetized CoFeB/MgO films, grown on different underlayers of W, TaN, and Hf, using two experimental methods. First, we determined the effective DMI field from measurements of field-driven domain wall motion in the creep regime, where applied in-plane magnetic fields induce an anisotropy in the wall propagation that is correlated with the DMI strength. Second, Brillouin light spectroscopy was employed to quantify the frequency non-reciprocity of spin waves in the CoFeB layers, which yielded an independent measurement of the DMI. By combining these results, we show that DMI estimates from the different techniques only yield qualitative agreement, which suggests that open questions remain on the underlying models used to interpret these results.
Co2FeAl (CFA) ultrathin films, of various thicknesses (0.9 nm<tCFA<1.8 nm), have been grown by sputtering on Si substrates, using Ir as a buffer layer. The magnetic properties of the structures have been studied by vibrating sample magnetometry (VSM), miscrostrip ferromagnetic resonance (MS-FMR) and Brillouin light scattering (BLS) in the Damon-Eshbach geometry. VSM characterizations show that films are mostly in-plane magnetized and the perpendicular saturating field increases with decreasing CFA thickness suggesting the existence of interface anisotropy. The presence of magnetic dead layers of 0.44 nm has been detected by VSM. The MS-FMR with perpendicular applied magnetic field has been used to determine the gyromagnetic factor. The BLS measurements reveal a pronounced nonreciprocal spin waves propagation, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI) induced by Ir interface with CFA, which increases with decreasing CFA thickness. The DMI sign has been found to be the same (negative) as that of Pt/Co, in contrast to the ab-initio calculation on Ir/Co. The thickness dependence of the effective DMI constant shows the existence of two regimes similarly to that of the perpendicular anisotropy constant. The DMI constant Ds was estimated to be -0.37 pJ/m for the thickest samples where a linear thickness dependence of the effective DMI constant has been observed.
We report the thickness dependence of Dzyaloshinskii-Moriya interaction (DMI) and spin-orbit torques (SOTs) in PtCo(t)AlOx, studied by current-induced domain wall (DW) motion and second-harmonic experiments. From the DW motion study, a monotonous decay of the effective DMI strength with an increasing Co thickness is observed, in agreement with a DMI originating at the PtCo interface. The study of the ferromagnetic thickness dependence of spin-orbit torques reveals a more complex behavior. The effective SOT-field driving the DW motion is found to initially increase and then saturate with an increasing ferromagnetic thickness, while the effective SOT-fields acting on a saturated magnetic state exhibit a non-monotonic behavior with increasing Co-thickness. The observed thickness dependence suggests the spin-Hall effect in Pt as the main origin of the SOTs, with the measured SOT amplitudes resulting from the interplay between the varying thickness and the transverse spin diffusion length of the Co layer.
The Dzyaloshinskii-Moriya interaction in ultrathin ferromagnets can result in nonreciprocal propagation of spin waves. We examine theoretically how spin wave power flow is influenced by this interaction. We show that the combination of the dipole-dipole and Dzyaloshinskii-Moriya interactions can result in unidirectional caustic beams in the Damon-Eshbach geometry. Morever, self-generated interface patterns can also be induced from a point-source excitation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا