Do you want to publish a course? Click here

Stable bunch trains for plasma wakefield acceleration

84   0   0.0 ( 0 )
 Added by Konstantin Lotov V.
 Publication date 2017
  fields Physics
and research's language is English
 Authors K.V. Lotov




Ask ChatGPT about the research

A train of short charged particle bunches can efficiently drive a strong plasma wakefield over a long propagation distance only if all bunches reside in focusing and decelerating phases of the wakefield. This is shown possible with equidistant bunch trains, but requires the bunch charge to increase along the train and the plasma frequency to be higher than the bunch repetition frequency.



rate research

Read More

116 - Shiyu Zhou , Jianfei Hua , Wei Lu 2020
Plasma wakefield acceleration in the blowout regime is particularly promising for high-energy acceleration of electron beams because of its potential to simultaneously provide large acceleration gradients and high energy transfer efficiency while maintaining excellent beam quality. However, no equivalent regime for positron acceleration in plasma wakes has been discovered to-date. We show that after a short propagation distance, an asymmetric electron beam drives a stable wakefield in a hollow plasma channel that can be both accelerating and focusing for a positron beam. A high charge positron bunch placed at a suitable distance behind the drive bunch can beam-load or flatten the longitudinal wakefield and enhance the transverse focusing force, leading to high-efficiency and narrow energy spread acceleration of the positrons. Three-dimensional quasi-static particle-in-cell (PIC) simulations show that over 30% energy extraction efficiency from the wake to the positrons and 1% level energy spread can be simultaneously obtained, and further optimization is feasible.
A new scheme for accelerating positively charged particles in a plasma wakefield accelerator is proposed. If the proton drive beam propagates in a hollow plasma channel, and the beam radius is of order of the channel width, the space charge force of the driver causes charge separation at the channel wall, which helps to focus the positively charged witness bunch propagating along the beam axis. In the channel, the acceleration buckets for positively charged particles are much larger than in the blowout regime of the uniform plasma, and stable acceleration over long distances is possible. In addition, phasing of the witness with respect to the wave can be tuned by changing the radius of the channel to ensure the acceleration is optimal. Two dimensional simulations suggest that, for proton drivers likely available in future, positively charged particles can be stably accelerated over 1 km with the average acceleration gradient of 1.3 GeV/m.
Hollow plasma channels are attractive for lepton acceleration because they provide intrinsic emittance preservation regimes. However, beam breakup instabilities dominate the dynamics. Here, we show that thin, warm hollow channels can sustain large-amplitude plasma waves ready for high-quality positron acceleration. We verify that the combination of warm electrons and thin hollow channel enables positron focusing structures. Such focusing wakefields unlock beam breakup damping mechanisms. We demonstrate that such channels emerge self-consistently during the long-term plasma dynamics in the blowouts regime aftermath, allowing for experimental demonstration.
We propose a new method for self-injection of high-quality electron bunches in the plasma wakefield structure in the blowout regime utilizing a flying focus produced by a drive-beam with an energy-chirp. In a flying focus the speed of the density centroid of the drive bunch can be superluminal or subluminal by utilizing the chromatic dependence of the focusing optics. We first derive the focal velocity and the characteristic length of the focal spot in terms of the focal length and an energy chirp. We then demonstrate using multi-dimensional particle-in-cell simulations that a wake driven by a superluminally propagating flying focus of an electron beam can generate GeV-level electron bunches with ultra-low normalized slice emittance ($sim$30 nm rad), high current ($sim$ 17 kA), low slice energy-spread ($sim$0.1%) and therefore high normalized brightness ($>10^{19}$ A/rad$^2$/m$^2$) in a plasma of density $sim10^{19}$ cm$^{-3}$. The injection process is highly controllable and tunable by changing the focal velocity and shaping the drive beam current. Near-term experiments using the new FACET II beam could potentially produce beams with brightness exceeding $10^{20}$ A/rad$^2$/m$^2$.
Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma electron trajectory crossing, resulting in the development of a potential outside the plasma boundary as electrons are transversely ejected. Trends consistent with the presence of this potential are experimentally measured and their dependence on wakefield amplitude are studied via seed laser timing scans and electron injection delay scans.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا