The Mu2e experiment at Fermilab will search for the coherent $mu to e$ conversion on aluminum atoms. The detector system consists of a straw tube tracker and a crystal calorimeter. A pre-production of 150 Silicon Photomultiplier arrays for the Mu2e calorimeter has been procured. A detailed quality assur- ance has been carried out on each SiPM for the determination of its own operation voltage, gain, dark current and PDE. The measurement of the mean-time-to-failure for a small random sample of the pro-production group has been also completed as well as the determination of the dark current increase as a function of the ioninizing and non-ioninizing dose.
The Mu2e calorimeter is composed of two disks each containing 1348 pure CsI crystals, each crystal read out by two arrays of 6x6 mm2 monolithic SiPMs. The experimental requirements have been translated in a series of technical specifications for both crystals and SiPMs. Quality assurance tests, on first crystal and then SiPM production batches, confirm the performances of preproduction samples previously assembled in a calorimeter prototype and tested with an electron beam. The production yield is sufficient to allow the construction of a calorimeter of the required quality in the expected times.
The Mu2e experiment is constructing a calorimeter consisting of 1,348 undoped CsI crystals in two disks. Each crystal has a dimension of 34 x 34 x 200 mm, and is readout by a large area silicon PMT array. A series of technical specifications was defined according to physics requirements. Preproduction CsI crystals were procured from three firms: Amcrys, Saint-Gobain and Shanghai Institute of Ceramics. We report the quality assurance on crystals scintillation properties and their radiation hardness against ionization dose and neutrons. With a fast decay time of 30 ns and a light output of more than 100 p.e./MeV measured with a bi-alkali PMT, undoped CsI crystals provide a cost-effective solution for the Mu2e experiment.
The Mu2e electromagnetic calorimeter has to provide precise information on energy, time and position for $sim$100 MeV electrons. It is composed of 1348 un-doped CsI crystals, each coupled to two large area Silicon Photomultipliers (SiPMs). A modular and custom SiPM layout consisting of a 3$times$2 array of 6$times$6 mm$^2$ UV-extended monolithic SiPMs has been developed to fulfill the Mu2e calorimeter requirements and a pre-production of 150 prototypes has been procured by three international firms (Hamamatsu, SensL and Advansid). A detailed quality assurance process has been carried out on this first batch of photosensors: the breakdown voltage, the gain, the quenching time, the dark current and the Photon Detection Efficiency (PDE) have been determined for each monolithic cell of each SiPMs array. One sample for each vendor has been exposed to a neutron fluency up to $sim$8.5~$times$~10$^{11}$ 1 MeV (Si) eq. n/cm$^{2}$ and a linear increase of the dark current up to tens of mA has been observed. Others 5 samples for each vendor have undergone an accelerated aging in order to verify a Mean Time To Failure (MTTF) higher than $sim$10$^{6}$ hours.
The SoLid experiment has been designed to search for an oscillation pattern induced by a light sterile neutrino state, utilising the BR2 reactor of SCK$bullet$CEN, in Belgium. The detector leverages a new hybrid technology, utilising two distinct scintillators in a cubic array, creating a highly segmented detector volume. A combination of 5 cm cubic polyvinyltoluene cells, with $^6$LiF:ZnS(Ag) sheets on two faces of each cube, facilitate reconstruction of the neutrino signals. % The polyvinyltoluene scintillator is used as an $overline{ u}_e$ target for the inverse beta decay of ($overline{ u}_e + p rightarrow e^{+}+n$), with the $^6$LiF:ZnS(Ag) sheets used for associated neutron detection. Scintillation signals are read out by a network of wavelength shifting fibres connected to multipixel photon counters. Whilst the high granularity provides a powerful toolset to discriminate backgrounds; by itself the segmentation also represents a challenge in terms of homogeneity and calibration, for a consistent detector response. The search for this light sterile neutrino implies a sensitivity to distortions of around $mathcal{O}$(10)% in the energy spectrum of reactor $overline{ u}_e$. Hence, a very good neutron detection efficiency, light yield and homogeneous detector response are critical for data validation. The minimal requirements for the SoLid physics program are a light yield and a neutron detection efficiency larger than 40 PA/MeV/cube and 50 % respectively. In order to guarantee these minimal requirements, the collaboration developed a rigorous quality assurance process for all 12800 cubic cells of the detector. To carry out the quality assurance process, an automated calibration system called CALIPSO was designed and constructed.
This paper describes the measurements of energy and time response and resolution of a 3 x 3 array made of undoped CsI crystals coupled to large area Hamamatsu Multi Pixel Photon Counters. The measurements have been performed using the electron beam of the Beam Test Facility in Frascati (Rome, Italy) in the energy range 80-120 MeV. The measured energy resolution, estimated with the FWHM, at 100 MeV is 16.4%. This resolution is dominated by the energy leakage due to the small dimensions of the prototype. The time is reconstructed by fitting the leading edge of the digitized signals and applying a digital constant fraction discrimination technique. A time resolution of about 110 ps at 100 MeV is achieved.