Do you want to publish a course? Click here

Wess-Zumino and Super Yang-Mills Theories in D=4 Integral Superspace

215   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We reconstruct the action of $N=1, D=4$ Wess-Zumino and $N=1, 2, D=4$ super-Yang-Mills theories, using integral top forms on the supermanifold ${cal M}^{(4|4)}$. Choosing different Picture Changing Operators, we show the equivalence of their rheonomic and superspace actions. The corresponding supergeometry and integration theory are discussed in detail. This formalism is an efficient tool for building supersymmetric models in a geometrical framework.



rate research

Read More

The renormalization of N=1 Super Yang-Mills theory is analysed in the Wess-Zumino gauge, employing the Landau condition. An all orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only three renormalization constants are needed, which can be identified with the coupling constant, gauge field and gluino renormalization. The non-renormalization theorem of the gluon-ghost-antighost vertex in the Landau gauge is shown to remain valid in N=1 Super Yang-Mills. Moreover, due to the non-linear realization of the supersymmetry in the Wess-Zumino gauge, the renormalization factor of the gauge field turns out to be different from that of the gluino. These features are explicitly checked through a three loop calculation.
143 - Marc Gillioz 2016
We show how to consistently renormalize $mathcal{N} = 1$ and $mathcal{N} = 2$ super-Yang-Mills theories in flat space with a local (i.e. space-time-dependent) renormalization scale in a holomorphic scheme. The action gets enhanced by a term proportional to derivatives of the holomorphic coupling. In the $mathcal{N} = 2$ case, this new action is exact at all orders in perturbation theory.
We present a formulation of the maximally supersymmetric N=4 gauge theory in Lorentz harmonic chiral (LHC) superspace. It is closely related to the twistor formulation of the theory but employs the simpler notion of Lorentz harmonic variables. They parametrize a two-sphere and allow us to handle efficiently infinite towers of higher-spin auxiliary fields defined on ordinary space-time. In this approach the chiral half of N=4 supersymmetry is manifest. The other half is realized non-linearly and the algebra closes on shell. We give a straightforward derivation of the Feynman rules in coordinate space. We show that the LHC formulation of the N=4 super-Yang-Mills theory is remarkably similar to the harmonic superspace formulation of the N=2 gauge and hypermultiplet matter theories. In the twin paper arXiv:1601.06804 we apply the LHC formalism to the study of the non-chiral multipoint correlation functions of the N=4 stress-tensor supermultiplet.
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
The background field method for N=2 super Yang-Mills theories in harmonic superspace is developed. The ghost structure of the theory is investigated. It is shown that the ghosts include two fermionic real omega-hypermultiplets (Faddeev-Popov ghosts) and one bosonic real omega-hypermultiplet (Nielsen-Kallosh ghost), all in the adjoint representation of the gauge group. The one-loop effective action is analysed in detail and it is found that its structure is determined only by the ghost corrections in the pure super Yang-Mills theory. As applied to the case of N=4 super Yang-Mills theory, realized in terms of N=2 superfields, the latter result leads to the remarkable conclusion that the one-loop effective action of the theory does not contain quantum corrections depending on the N=2 gauge superfield only. We show that the leading low-energy contribution to the one-loop effective action in the N=2 SU(2) super Yang-Mills theory coincides with Seibergs perturbative holomorphic effective action.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا