Predicting when rupture occurs or cracks progress is a major challenge in numerous elds of industrial, societal and geophysical importance. It remains largely unsolved: Stress enhancement at cracks and defects, indeed, makes the macroscale dynamics extremely sensitive to the microscale material disorder. This results in giant statistical uctuations and non-trivial behaviors upon upscaling dicult to assess via the continuum approaches of engineering. These issues are examined here. We will see: How linear elastic fracture mechanics sidetracks the diculty by reducing the problem to that of the propagation of a single crack in an eective material free of defects, How slow cracks sometimes display jerky dynamics, with sudden violent events incompatible with the previous approach, and how some paradigms of statistical physics can explain it, How abnormally fast cracks sometimes emerge due to the formation of microcracks at very small scales.