No Arabic abstract
Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations ({it e.g.} SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters ($z<0.2$). For high redshift clusters ($z>0.5$) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2.}
The main limiting factor of cosmological analyses based on thermal Sunyaev-Zeldovich (SZ) cluster statistics comes from the bias and systematic uncertainties that affect the estimates of the mass of galaxy clusters. High-angular resolution SZ observations at high redshift are needed to study a potential redshift or morphology dependence of both the mean pressure profile and of the mass-observable scaling relation used in SZ cosmological analyses. The NIKA2 camera is a new generation continuum instrument installed at the IRAM 30-m telescope. With a large field of view, a high angular resolution and a high-sensitivity, the NIKA2 camera has unique SZ mapping capabilities. In this paper, we present the NIKA2 SZ large program, aiming at observing a large sample of clusters at redshifts between 0.5 and 0.9, and the characterization of the first cluster oberved with NIKA2.
NIKA2 is a dual-band millimetric camera of thousands of Kinetic Inductance Detectors (KID) installed at the IRAM 30-meter telescope in the Spanish Sierra Nevada. The instrument commissioning was completed in September 2017, and NIKA2 is now open to the scientific community and will operate for the next decade. NIKA2 has well-adapted instrumental design and performance to produce high-resolution maps of the thermal Sunyaev-Zeldovich (SZ) effect toward intermediate and high redshift galaxy clusters. Moreover, it benefits from a guaranteed time large program dedicated to mapping a representative sample of galaxy clusters via SZ and that includes X-ray follow-ups. The main expected outputs of the SZ large program are the constraints on the redshift evolution of the pressure profile and the mass-observable relation. The first SZ mapping of a galaxy cluster with NIKA2 was produced, as part of the SZ large program. We found a sizable impact of the intracluster medium dynamics on the integrated SZ observables. This shows NIKA2 capabilities for the precise characterisation of the mass-observable relation that is required for accurate cosmology with galaxy clusters.
The complete characterization of the pressure profile of high-redshift galaxy clusters, from their core to their outskirts, is a major issue for the study of the formation of large-scale structures. It is essential to constrain a potential redshift evolution of both the slope and scatter of the mass-observable scaling relations used in cosmology studies based on cluster statistics. In this paper, we present the first thermal Sunyaev-Zeldovich (tSZ) mapping of a cluster from the sample of the NIKA2 SZ large program that aims at constraining the redshift evolution of cluster pressure profiles and the tSZ-mass scaling relation. We have observed the galaxy cluster PSZ2 G144.83+25.11 at redshift $z=0.58$ with the NIKA2 camera, a dual-band (150 and 260 GHz) instrument operated at the IRAM 30-meter telescope. We identify a thermal pressure excess in the south-west region of PSZ2 G144.83+25.11 and a high redshift sub-millimeter point source that affect the intracluster medium (ICM) morphology of the cluster. The NIKA2 data are used jointly with tSZ data acquired by the MUSTANG, Bolocam and $Planck$ experiments in order to non-parametrically set the best constraints on the electronic pressure distribution from the cluster core ($rm{R} sim 0.02 rm{R_{500}}$) to its outskirts ($rm{R} sim 3 rm{R_{500}} $). We investigate the impact of the over-pressure region on the shape of the pressure profile and on the constraints on the integrated Compton parameter $rm{Y_{500}}$. A hydrostatic mass analysis is also performed by combining the tSZ-constrained pressure profile with the deprojected electronic density profile from XMM-$Newton$. This allows us to conclude that the estimates of $rm{Y_{500}}$ and $rm{M_{500}}$ obtained from the analysis with and without masking the disturbed ICM region differ by 65 and 79% respectively. (abridged)
Clusters of galaxies, the largest bound objects in the Universe, constitute a cosmological probe of choice, which is sensitive to both dark matter and dark energy. Within this framework, the Sunyaev-Zeldovich (SZ) effect has opened a new window for the detection of clusters of galaxies and for the characterization of their physical properties such as mass, pressure and temperature. NIKA, a KID-based dual band camera installed at the IRAM 30-m telescope, was particularly well adapted in terms of frequency, angular resolution, field-of-view and sensitivity, for the mapping of the thermal and kinetic SZ effect in high-redshift clusters. In this paper, we present the NIKA cluster sample and a review of the main results obtained via the measurement of the SZ effect on those clusters: reconstruction of the cluster radial pressure profile, mass, temperature and velocity.
High-resolution mapping of the hot gas in galaxy clusters is a key tool for cluster-based cosmological analyses. Taking advantage of the NIKA2 millimeter camera operated at the IRAM 30-m telescope, the NIKA2 SZ Large Program seeks to get a high-resolution follow-up of 45 galaxy clusters covering a wide mass range at high redshift in order to re-calibrate some of the tools needed for the cosmological exploitation of SZ surveys. We present the second cluster analysis of this program, targeting one of the faintest sources of the sample in order to tackle the difficulties in data reduction for such faint, low-SNR clusters. In this study, the main challenge is the precise estimation of the contamination by sub-millimetric point sources, which greatly affects the tSZ map of the cluster. We account for this contamination by performing a joint fit of the SZ signal and of the flux density of the compact sources. A prior knowledge of these fluxes is given by the adjustment of the SED of each source using data from both NIKA2 and the textit{Herschel} satellite. The first results are very promising and demonstrate the possibility to estimate thermodynamic properties with NIKA2, even in a compact cluster heavily contaminated by point sources.