Do you want to publish a course? Click here

Toward electrodynamics of unconventional phases of dilute nuclear matter

144   0   0.0 ( 0 )
 Added by Armen Sedrakian
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The phase diagram of isospin-asymmetrical nuclear matter may feature a number of unconventional phases, which include the translationally and rotationally symmetric, but isospin-asymmetrical BCS condensate, the current-carrying Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase, and the heterogeneous phase-separated phase. Because the Cooper pairs of the condensate carry a single unit of charge, these phases are charged superconductors and respond to electromagnetic gauge fields by either forming domains (type-I superconductivity) or quantum vortices (type-II superconductivity). We evaluate the Ginzburg-Landau (GL) parameter across the phase diagram and find that the unconventional phases of isospin-asymmetrical nuclear matter are good type-II superconductors and should form Abrikosov vortices with twice the quantum of magnetic flux. We also find that the LOFF phase at the boundary of the transition to the type-I state, with the GL parameter being close to the critical value $1/sqrt{2}$.



rate research

Read More

150 - Xin-Hui Wu 2017
The Bose-Einstein condensation of $alpha$ partciles in the multicomponent environment of dilute, warm nuclear matter is studied. We consider the cases of matter composed of light clusters with mass numbers $Aleq 4$ and matter that in addition these clusters contains $isotope[56]{Fe}$ nuclei. We apply the quasiparticle gas model which treats clusters as bound states with infinite life-time and binding energies independent of temperature and density. We show that the $alpha$ particles can form a condensate at low temperature $Tle 2$ MeV in such matter in the first case. When the $isotope[56]{Fe}$ nucleus is added to the composition the cluster abundances are strongly modified at low temperatures, with an important implication that the $alpha$ condensation at these temperatures is suppressed.
We review the long standing problem of superfluid pairing in pure neutron matter. For the $s$-wave pairing, we summarize the state of the art of many-body approaches including different $nn$ interactions, medium polarization, short-range correlations and BCS-BEC crossover effects, and compare them with quantum Monte Carlo results at low-densities. We also address pairing in the $p$-wave, which appears at higher densities and hence has large uncertainties due to the poorly constrained interactions, medium effects and many-body forces.
86 - B.Krippa 2000
The effective chiral theory of the in-medium NN interactions is considered. The shallow bound states, which complicate the effective field theory analysis in vacuum do not exist in matter. We show that the next-to-leading order terms in the chiral expansion of the effective Lagrangian can be interpreted as corrections so that the expansion is systematic. The Low Energy Effective Constants of this Lagrangian are found to satisfy the concept of naturalness. The potential energy per particle is calculated. The problems and challenges in constructing the chiral theory of nuclear matter are outlined.
127 - F. Weber 2019
In the first part of this paper, we investigate the possible existence of a structured hadron-quark mixed phase in the cores of neutron stars. This phase, referred to as the hadron-quark pasta phase, consists of spherical blob, rod, and slab rare phase geometries. Particular emphasis is given to modeling the size othis phase in rotating neutron stars. We use the relativistic mean-field theory to model hadronic matter and the non-local three-flavor Nambu-Jona-Lasinio model to describe quark matter. Based on these models, the hadron-quark pasta phase exists only in very massive neutron stars, whose rotational frequencies are less than around 300 Hz. All other stars are not dense enough to trigger quark deconfinement in their cores. Part two of the paper deals with the quark-hadron composition of hot (proto) neutron star matter. To this end we use a local three-flavor Polyakov-Nambu-Jona-Lasinio model which includes the t Hooft (quark flavor mixing) term. It is found that this term leads to non-negligible changes in the particle composition of (proto) neutron stars made of hadron-quark matter.
We prove the existence of non-equilibrium phases of matter in the prethermal regime of periodically-driven, long-range interacting systems, with power-law exponent $alpha > d$, where $d$ is the dimensionality of the system. In this context, we predict the existence of a disorder-free, prethermal discrete time crystal in one dimension -- a phase strictly forbidden in the absence of long-range interactions. Finally, using a combination of analytic and numerical methods, we highlight key experimentally observable differences between such a prethermal time crystal and its many-body localized counterpart.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا