Do you want to publish a course? Click here

Scaling within the Spectral Function approach

329   0   0.0 ( 0 )
 Added by Noemi Rocco
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpretating neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of $^{12}$C, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole SF.



rate research

Read More

We have studied the scaling properties of the electromagnetic response functions of $^4$He and $^{12}$C nuclei computed by the Greens Function Monte Carlo approach, retaining only the one-body current contribution. Longitudinal and transverse scaling functions have been obtained in the relativistic and non relativistic cases and compared to experiment for various kinematics. The characteristic asymmetric shape of the scaling function exhibited by data emerges in the calculations in spite of the non relativistic nature of the model. The results are consistent with scaling of zeroth, first and second kinds. Our analysis reveals a direct correspondence between the scaling and the nucleon-density response functions.
195 - N. Rocco , C. Barbieri 2018
We compute inclusive electron-nucleus cross sections using ab initio spectral functions of $^4$He and $^{16}$O obtained within the Self Consistent Greens Function approach. The formalism adopted is based on the factorization of the spectral function and the nuclear transition matrix elements. This allows to provide an accurate description of nuclear dynamics and to account for relativistic effects in the interaction vertex. Our calculations use a saturating chiral Hamiltonian in order reproduce the correct nuclear sizes. When final state interactions for the struck particle are accounted for, we find nice agreement between the data and the theory for the inclusive electron-$^{16}$O cross section. The results lay the foundations for future applications of the Self Consistent Greens Function method, in both closed and open shell nuclei, to neutrino data analysis. This work also presents results for the point-proton, charge and single-nucleon momentum distribution of the same two nuclei. The center of mass can affect these quantities for light nuclei and cannot be separated cleanly in most ab initio post-Hartree-Fock methods. In order to address this, we developed a Metropolis Monte Carlo calculation in which the center of mass coordinate can be subtracted exactly from the trial wave function and the expectation values. We gauged this effect for $^4$He by removing the center of mass effect from the Optimal Reference State wave function that is generated during the Self Consistent Greens Function calculations. Our findings clearly indicate that the residual center of mass contribution strongly modifies calculated matter distributions with respect to those obtained in the intrinsic frame. Hence, its subtraction is crucial for a correct description of light nuclei.
We developed a novel approach based on a generalization of factorization and nuclear spectral functions, allowing for a consistent treatment of the amplitudes involving one- and two-nucleon currents, whose contribution to the nuclear electromagnetic response in the transverse channel is known to be significant. We report the results of calculations of the inclusive electron-carbon cross section, showing that the inclusion of processes involving two-nucleon currents appreciably improves the agreement between theory and data in the dip region, between the quasi elastic and $Delta$-production peaks. The implications for the analysis of neutrino-nucleus cross sections are discussed.
Single-particle energies of the $Lambda_c$ chamed baryon are obtained in several nuclei from the relevant self-energy constructed within the framework of a perturbative many-body approach. Results are presented for a charmed baryon-nucleon ($Y_cN$) potential based on a SU(4) extension of the meson-exchange hyperon-nucleon potential $tilde A$ of the J{u}lich group. Three different models (A, B and C) of this interaction, that differ only on the values of the couplings of the scalar $sigma$ meson with the charmed baryons, are considered. Phase shifts, scattering lengths and effective ranges are computed for the three models and compared with those predicted by the $Y_cN$ interaction derived in Eur. Phys. A {bf 54}, 199 (2018) from the extrapolation to the physical pion mass of recent results of the HAL QCD Collaboration. Qualitative agreement is found for two of the models (B and C) considered. Our results for $Lambda_c$-nuclei are compatible with those obtained by other authors based on different models and methods. We find a small spin-orbit splitting of the $p-, d-$ and $f-$wave states as in the case of single $Lambda$-hypernuclei. The level spacing of $Lambda_c$ single-particle energies is found to be smaller than that of the corresponding one for hypernuclei. The role of the Coulomb potential and the effect of the coupling of the $Lambda_cN$ and $Sigma_cN$ channels on the single-particle properties of $Lambda_c-$nuclei are also analyzed. Our results show that, despite the Coulomb repulsion between the $Lambda_c$ and the protons, even the less attractive one of our $Y_cN$ models (model C) is able to bind the $Lambda_c$ in all the nuclei considered. The effect of the $Lambda_cN-Sigma_cN$ coupling is found to be almost negligible due to the large mass difference of the $Lambda_c$ and $Sigma_c$ baryons.
The analysis of semi-inclusive deep inelastic electron scattering off polarized $^3$He at finite momentum transfers, aimed at the extraction of the quark transverse-momentum distributions in the neutron, requires the use of a distorted spin-dependent spectral function for $^3$He, which takes care of the final state interaction effects. This quantity is introduced in the non-relativistic case, and its generalization in a Poincare covariant framework, in plane wave impulse approximation for the moment being, is outlined. Studying the light-front spin-dependent spectral function for a J=1/2 system, such as the nucleon, it is found that, within the light-front dynamics with a fixed number of constituents and in the valence approximation, only three of the six leading twist T-even transverse-momentum distributions are independent.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا