No Arabic abstract
High temperature superconductivity has been found in many kinds of compounds built from planes of Cu and O, separated by spacer layers. Understanding why critical temperatures are so high has been the subject of numerous investigations and extensive controversy. To realize high temperature superconductivity, parent compounds are either hole-doped, such as {La$_{2}$CuO$_4$} (LCO) with Sr (LSCO), or electron doped, such as {Nd$_{2}$CuO$_4$} (NCO) with Ce (NCCO). In the electron doped cuprates, the antiferromagnetic phase is much more robust than the superconducting phase. However, it was recently found that the reduction of residual out-of-plane apical oxygens dramatically affects the phase diagram, driving those compounds to a superconducting phase. Here we use a recently developed first principles method to explore how displacement of the apical oxygen (A-O) in LCO affects the optical gap, spin and charge susceptibilities, and superconducting order parameter. By combining quasiparticle self-consistent GW (QSemph{GW}) and dynamical mean field theory (DMFT), that LCO is a Mott insulator; but small displacements of the apical oxygens drive the compound to a metallic state through a localization/delocalization transition, with a concomitant maximum $d$-wave order parameter at the transition. We address the question whether NCO can be seen as the limit of LCO with large apical displacements, and elucidate the deep physical reasons why the behaviour of NCO is so different than the hole doped materials. We shed new light on the recent correlation observed between T$_c$ and the charge transfer gap, while also providing a guide towards the design of optimized high-Tc superconductors. Further our results suggest that strong correlation, enough to induce Mott gap, may not be a prerequisite for high-Tc superconductivity.
On the basis of experimental thermoelectric power results and ab initio calculations, we propose that a metal-insulator transition takes place at high pressure (approximately 6 GPa) in MgV_2O_4.
We report on the structural, magnetic, and electronic properties of two new double-perovskites synthesized under high pressure; Pb2CaOsO6 and Pb2ZnOsO6. Upon cooling below 80 K, Pb2CaOsO6 simultaneously undergoes a metal--insulator transition and develops antiferromagnetic order. Pb2ZnOsO6, on the other hand, remains a paramagnetic metal down to 2 K. The key difference between the two compounds lies in their crystal structure. The Os atoms in Pb2ZnOsO6 are arranged on an approximately face-centred cubic lattice with strong antiferromagnetic nearest-neighbor exchange couplings. The geometrical frustration inherent to this lattice prevents magnetic order from forming down to the lowest temperatures. In contrast, the unit cell of Pb2CaOsO6 is heavily distorted up to at least 500 K, including antiferroelectric-like displacements of the Pb and O atoms despite metallic conductivity above 80 K. This distortion relieves the magnetic frustration, facilitating magnetic order which in turn drives the metal--insulator transition. Our results suggest that the phase transition in Pb2CaOsO6 is spin-driven, and could be a rare example of a Slater transition.
By means of first principles schemes based on magnetically constrained density functional theory and on the band unfolding technique we study the effect of doping on the conducting behaviour of the Lifshitz magnetic insulator NaOsO3. Electron doping is treated realistically within a supercell approach by replacing sodium with magnesium at different concentrations. Our data indicate that by increasing carrier concentration the system is subjected to two types of transition: (i) insulator to bad metal at low doping and low temperature and (ii) bad metal to metal at high doping and/or high-temperature. The predicted doping-induced insulator to metal transition (MIT) has similar traits with the temperature driven MIT reported in the undoped compound. Both develops in an itinerant background and exhibit a coupled electronic and magnetic behaviour characterized by the gradual quenching of the (pseudo)-gap associated with an reduction of the local spin moment. Unlike the temperature-driven MIT, chemical doping induces substantial modifications of the band structure and the MIT cannot be fully described as a Lifshitz process.
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (~ 2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
Metal-insulator transition (MIT) is one of the most conspicuous phenomena in correlated electron systems. However such transition has rarely been induced by an external magnetic field as the field scale is normally too small compared with the charge gap. In this paper we present the observation of a magnetic-field-driven MIT in a magnetic semiconductor $beta $-EuP$_3$. Concomitantly, we found a colossal magnetoresistance (CMR) in an extreme way: the resistance drops billionfold at 2 kelvins in a magnetic field less than 3 teslas. We ascribe this striking MIT as a field-driven transition from an antiferromagnetic and paramagnetic insulator to a spin-polarized topological semimetal, in which the spin configuration of $mathrm{Eu^{2+}}$ cations and spin-orbital coupling (SOC) play a crucial role. As a phosphorene-bearing compound whose electrical properties can be controlled by the application of field, $beta $-EuP$_3$ may serve as a tantalizing material in the basic research and even future electronics.