Do you want to publish a course? Click here

Dynamic Displacement Disorder of Cubic BaTiO$_3$

151   0   0.0 ( 0 )
 Added by Marek Pasciak
 Publication date 2017
  fields Physics
and research's language is English
 Authors M. Pasciak




Ask ChatGPT about the research

The three dimensional distribution of the X-ray diffuse scattering intensity of BaTiO$_3$ has been recorded in a synchrotron experiment and simultaneously computed using molecular dynamics simulations of a shell-model. Together these have allowed the details of the disorder in paraelectric BaTiO$_3$ to be clarified. The narrow sheets of diffuse scattering, related to the famous anisotropic longitudinal correlations of Ti ions, are shown to be caused entirely by the overdamped anharmonic soft phonon branch. This finding demonstrates that the occurrence of narrow sheets of diffuse scattering agrees with a displacive picture of the cubic phase of this textbook ferroelectric material.



rate research

Read More

Cylindrical BaTiO3 nanorods embedded in (100)-oriented SrTiO3 epitaxial film in a brush-like configuration are investigated in the framework of the Ginzburg-Landau-Devonshire model. It is shown that strain compatibility at BaTiO3/SrTiO3 interfaces keeps BaTiO3 nanorods in the rhombohedral phase even at room temperature. Depolarization field at the BaTiO3/SrTiO3 interfaces is reduced by an emission of the 109-degree or 71-degree domain boundaries. In case of nanorods of about 10-80 nm diameter, the ferroelectric domains are found to form a quadruplet with a robust flux-closure arrangement of the in-plane components of the spontaneous polarization. The out-of-plane components of the polarization are either balanced or oriented up or down along the nanorod axis. Switching of the out-of-plane polarization with coercive field of about $5.10^6$ V/m occurs as a collapse of a 71-degree cylindrical domain boundary formed at the curved circumference surface of the nanorod. The remnant domain quadruplet configuration is chiral, with the $C_4$ macroscopic symmetry. More complex stable domain configurations with coexisting clockwise and anticlockwise quadruplets contain interesting arrangement of strongly curved 71-degree boundaries.
We find that in BaTiO$_3$ the phonon angular momentum is dominantly pointing in directions perpendicular to the electrical polarization. Therefore, external electric field in ferroelectric BaTiO$_3$ does not control only the direction of electrical polarization, but also the direction of phonon angular momentum. This finding opens up the possibility for electric-field control of physical phenomena that rely on phonon angular momentum. We construct an intuitive model, based on our first-principles calculations, that captures the origin of the relationship between phonon angular momentum and electric polarization.
113 - F. Chen , Y. Zhu , S. Liu 2016
The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here we apply sub-picosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO$_3$ ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond timescales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables direct comparison with first-principles-based molecular dynamics simulations, with good agreement obtained.
307 - Javier Junquera 2002
We report first-principles density-functional pseudopotential calculations on the atomic structures, electronic properties, and band offsets of BaO/BaTiO$_3$ and SrO/SrTiO$_3$ nanosized heterojunctions grown on top of a silicon substrate. The density of states at the junction does not reveal any electronic induced interface states. A dominant perovskite character is found at the interface layer. The tunability of the band offset with the strain conditions imposed by the substrate is studied. Using previously reported theoretical data available for Si/SrO, Si/BaO and BaTiO$_{3}$/SrRuO$_{3}$ interfaces we extrapolate a value for the band alignments along the whole gate stacks of technological interest: Si/SrO/SrTiO$_3$ and Si/BaO/BaTiO$_3$/SrRuO$_3$ heterostructures.
Simultaneous co-existence of room-temperature(T) ferromagnetism and ferroelectricity in Fe doped BaTiO$_3$ (BTO) is intriguing, as such Fe doping into tetragonal BTO, a room-T ferroelectric (FE), results in the stabilization of its hexagonal polymorph which is FE only below $sim$80K. Here, we investigate its origin and show that Fe-doped BTO has a mixed-phase room-temperature multiferroicity, where the ferromagnetism comes from the majority hexagonal phase and a minority tetragonal phase gives rise to the observed weak ferroelectricity. In order to achieve majority tetragonal phase (responsible for room-T ferroelectricity) in Fe-doped BTO, we investigate the role of different parameters which primarily control the PE hexagonal phase stability over the FE tetragonal one and identify three major factors namely, the effect of ionic size, Jahn-Teller (J-T) distortions and oxygen vacancies (OVs), to be primarily responsible. The effect of ionic size which can be qualitatively represented using the Goldschmidts tolerance (GT) factor seems to be the major dictating factor for the hexagonal phase stability. The understanding of these factors not only enables us to control them but also, achieve suitable co-doped BTO compound with enhanced room-T multiferroic properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا