No Arabic abstract
Meeting the ever-growing information rate demands has become of utmost importance for optical communication systems. However, it has proven to be a challenging task due to the presence of Kerr effects, which have largely been regarded as a major bottleneck for enhancing the achievable information rates in modern optical communications. In this work, the optimisation and performance of digital nonlinearity compensation are discussed for maximising the achievable information rates in spectrally-efficient optical fibre communication systems. It is found that, for any given target information rate, there exists a trade-off between modulation format and compensated bandwidth to reduce the computational complexity requirement of digital nonlinearity compensation.
In this paper, the performance of adaptive turbo equalization for nonlinearity compensation (NLC) is investigated. A turbo equalization scheme is proposed where a recursive least-squares (RLS) algorithm is used as an adaptive channel estimator to track the time-varying intersymbol interference (ISI) coefficients associated with inter-channel nonlinear interference (NLI) model. The estimated channel coefficients are used by a MIMO 2x2 soft-input soft-output (SISO) linear minimum mean square error (LMMSE) equalizer to compensate for the time-varying ISI. The SISO LMMSE equalizer and the SISO forward error correction (FEC) decoder exchange extrinsic information in every turbo iteration, allowing the receiver to improve the performance of the channel estimation and the equalization, achieving lower bit-error-rate (BER) values. The proposed scheme is investigated for polarization multiplexed 64QAM and 256QAM, although it applies to any proper modulation format. Extensive numerical results are presented. It is shown that the scheme allows up to 0.7 dB extra gain in effectively received signal-to-noise ratio (SNR) and up to 0.2 bits/symbol/pol in generalized mutual information (GMI), on top of the gain provided by single-channel digital backpropagation.
The potential benefits of extending the optical fibre transmission bandwidth are studied. Even in the presence of Kerr nonlinearity and inter-channel stimulated Raman scattering, increasing the usable optical fibre bandwidth appears to be the most promising solution to increase system throughput.
Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.
A perturbation-based nonlinear compensation scheme assisted by a feedback from the forward error correction (FEC) decoder is numerically and experimentally investigated. It is shown by numerical simulations and transmission experiments that a feedback from the FEC decoder enables improved compensation performance, allowing the receiver to operate very close to the full data-aided performance bounds. The experimental analysis considers the dispersion uncompensated transmission of a 5 x 32 GBd WDM system with DP-16QAM and DP-64QAM after 4200 km and 1120 km, respectively. The experimental results show that the proposed scheme outperforms single-channel digital backpropagation. A perturbation-based nonlinear compensation scheme assisted by a feedback from the forward error correction (FEC) decoder is numerically and experimentally investigated. It is shown by numerical simulations and transmission experiments that a feedback from the FEC decoder enables improved compensation performance, allowing the receiver to operate very close to the full data-aided performance bounds. The experimental analysis considers the dispersion uncompensated transmission of a 5 x 32 GBd WDM system with DP-16QAM and DP-64QAM after 4200 km and 1120 km, respectively. The experimental results show that the proposed scheme outperforms single-channel digital backpropagation.
Free-space optical communication is a promising means to establish versatile, secure and high-bandwidth communication for many critical point-to-point applications. While the spatial modes of light offer an additional degree of freedom to increase the information capacity of an optical link, atmospheric turbulence can introduce severe distortion to the spatial modes and lead to data degradation. Here, we propose and demonstrate a vector-beam-based, turbulence-resilient communication protocol, namely spatial polarization differential phase shift keying (SPDPSK), that can encode a large number of information levels using orthogonal spatial polarization states of light. We show experimentally that the spatial polarization profiles of the vector modes are resilient to atmospheric turbulence, and therefore can reliably transmit high-dimensional information through a turbid channel without the need of any adaptive optics for beam compensation. We construct a proof-of-principle experiment with a controllable turbulence cell. Using 34 vector modes, we have measured a channel capacity of 4.84 bits per pulse (corresponding to a data error rate of 4.3%) through a turbulent channel with a scintillation index larger than 1. Our SPDPSK protocol can also effectively transmit 4.02 bits of information per pulse using 18 vector modes through even stronger turbulence with a scintillation index of 1.54. Our study provides direct experimental evidence on how the spatial polarization profiles of vector beams are resilient to atmospheric turbulence and paves the way towards practical, high-capacity, free-space communication solutions with robust performance under harsh turbulent environments.