No Arabic abstract
We have determined the temperature evolution of the spin and orbital moments in the zero magnetization ferromagnet Sm$_{1-x}$Gd$_x$Al$_2$ (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of $approx 0.1$~mub. Our results clearly demonstrate that, when magnetised by a field of 8T, the spin and orbital moments in Sm$_{1-x}$Gd$_x$Al$_2$ are oppositely directed so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2mub with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp $approx 67$K above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the smion ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd$^{3+}$ ions.
The interplay between non-trivial topological states of matter and strong electronic correlations is one of the most compelling open questions in condensed matter physics. Due to experimental challenges, there is an increasing desire to find more microscopic techniques to complement the results of more traditional experiments. In this work, we locally explore the Kondo insulator Sm$_{1-x}$Gd$_{x}$B$_{6}$ by means of electron spin resonance (ESR) of Gd$^{3+}$ ions at low temperatures. Our analysis reveals that the Gd$^{3+}$ ESR line shape shows an anomalous evolution as a function of temperature, wherein for highly dilute samples (x $approx$ 0.0002) the Gd$^{3+}$ ESR line shape changes from a localized ESR local moment character to a diffusive-like character. Upon manipulating the sample surface with a focused ion beam we demonstrate, in combination with electrical resistivity measurements, that the localized character of the Gd$^{3+}$ ESR line shape is recovered by increasing the penetration of the microwave in the sample. This provides compelling evidence for the contribution of surface or near-surface excitations to the relaxation mechanism in the Gd$^{3+}$ spin dynamics. Our work brings new insights into the importance of non-trivial surface excitations in ESR, opening new routes to be explored both theoretically and experimentally.
Polarised neutron diffraction measurements have been made on HoFeO$_3$ single crystals magnetised in both the [001] and [100] directions ($Pbnm$ setting). The polarisation dependencies of Bragg reflection intensities were measured both with a high field of H = 9 T parallel to [001] at T = 70 K and with the lower field H = 0.5 T parallel to [100] at T = 5, 15, 25~K. A Fourier projection of magnetization induced parallel to [001], made using the $hk0$ reflections measured in 9~T, indicates that almost all of it is due to alignment of Ho moments. Further analysis of the asymmetries of general reflections in these data showed that although, at 70~K, 9~T applied parallel to [001] hardly perturbs the antiferromagnetic order of the Fe sublattices, it induces significant antiferromagnetic order of the Ho sublattices in the $xmhyphen y$ plane, with the antiferromagnetic components of moment having the same order of magnitude as the induced ferromagnetic ones. Strong intensity asymmetries measured in the low temperature $Gamma_2$ structure with a lower field, 0.5 T $parallel$ [100] allowed the variation of the ordered components of the Ho and Fe moments to be followed. Their absolute orientations, in the 180degree domain stabilised by the field were determined relative to the distorted perovskite structure,. This relationship fixes the sign of the Dzyalshinski-Moriya (D-M) interaction which leads to the weak ferromagnetism. Our results indicate that the combination of strong y-axis anisotropy of the Ho moments and Ho-Fe exchange interactions breaks the centrosymmetry of the structure and could lead to ferroelectric polarization.
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co$_{1-x}$Fe$_{x}$)$_{y}$As$_{2}$, $0leq xleq1$, $1.86leq y leq 2$, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the $c$ axis, persists for $xlesssim0.12(1)$. The antiferromagnetic order is smoothly suppressed with increasing $x$, with both the ordered moment and N{e}el temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for $xleq0.25$, nor does ferromagnetic order for $x$ up to at least $x=0.104$, and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo$_{1.86}$As$_{2}$ to the tetragonal (T) phase of CaFe$_{2}$As$_{2}$ occurs. These results suggest that hole doping CaCo$_{1.86}$As$_{2}$ has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.
We use neutron powder diffraction to study on the non-superconducting phases of ThFeAsN$_{1-x}$O$_x$ with $x=0.15, 0.6$. In our previous results on the superconducting phase ThFeAsN with $T_c=$ 30 K, no magnetic transition is observed by cooling down to 6 K, and possible oxygen occupancy at the nitrogen site is shown in the refinement(H. C. Mao emph{et al.}, EPL, 117, 57005 (2017)). Here, in the oxygen doped system ThFeAsN$_{1-x}$O$_x$, two superconducting region ($0leqslant x leqslant 0.1$ and $0.25leqslant x leqslant 0.55$) have been identified by transport experiments (B. Z. Li emph{et al.}, J. Phys.: Condens. Matter 30, 255602 (2018)). However, within the resolution of our neutron powder diffraction experiment, neither the intermediate doping $x=0.15$ nor the heavily overdoped compound $x= 0.6$ shows any magnetic order from 300 K to 4 K. Therefore, while it shares the common phenomenon of two superconducting domes as most of 1111-type iron-based superconductors, the magnetically ordered parent compound may not exist in this nitride family.
We report the structural, magnetic, and magnetocaloric properties of Co$_2$Cr$_{1-x}$Ti$_x$Al ($x=$ 0--0.5) Heusler alloys for spintronic and magnetic refrigerator applications. Room temperature X-ray diffraction and neutron diffraction patterns along with Rietveld refinements confirm that the samples are of single phase and possess a cubic structure. Interestingly, magnetic susceptibly measurements indicate a second order phase transition from paramagnetic to ferromagnetic where the Curie temperature (T$_{rm C}$) of Co$_2$CrAl increases from 330~K to 445~K with Ti substitution. Neutron powder diffraction data of the $x=$ 0 sample across the magnetic phase transition taken in a large temperature range confirm the structural stability and exclude the possibility of antiferromagnetic ordering. The saturation magnetization of the $x=$ 0 sample is found to be 8000~emu/mol (1.45~$mu_{rm B}$/{it f.u.}) at 5~K, which is in good agreement with the value (1.35$pm$0.05~$mu_{rm B}$/{it f.u.}) obtained from the Rietveld analysis of the neutron powder diffraction pattern measured at temperature of 4~K. By analysing the temperature dependence of the neutron data of the $x=$ 0 sample, we find that the change in the intensity of the most intense Bragg peak (220) is consistent with the magnetization behavior with temperature. Furthermore, an enhancement of change in the magnetic entropy and relative cooling power values has been observed for the $x=$ 0.25 sample. Interestingly, the critical behavior analysis across the second order magnetic phase transition and extracted exponents ($betaapprox$ 0.496, $gammaapprox$ 1.348, and $deltaapprox$ 3.71 for the $x=$ 0.25 sample) suggest the presence of long-range ordering, which deviates towards 3D Heisenberg type interactions above T$_{rm C}$, consistent with the interaction range value $sigma$.