Polarized neutron reflectometry measurements are presented exploring the evolution of ferrimagnetism in GdTiO$_3$ films as they are confined between SrTiO$_3$ layers of variable thicknesses. As GdTiO$_3$ films approach the thin layer limit and are confined within a substantially thicker SrTiO$_3$ matrix, the TiO$_6$ octahedral tilts endemic to GdTiO$_3$ coherently relax toward the undistorted, cubic phase of SrTiO$_3$. Our measurements reveal that the ferrimagnetic state within the GdTiO$_3$ layers survives as the TiO$_6$ octahedral tilts in the GdTiO$_3$ layers are suppressed. Furthermore, our data suggest that a magnetic dead layer develops within the GdTiO$_3$ layer at each GdTiO$_3$/ SrTiO$_3$ interface. The ferrimagnetic moment inherent to the core GdTiO$_3$ layers is negligibly (in models with dead layers) or only weakly (in models without dead layers) impacted as the octahedral tilt angles are suppressed by more than 50$%$ and the $t_{2g}$ bandwidth is dramatically renormalized.