We report the synthesis, crystal structure, superconductivity and physical property characterizations of the ternary equiatomic compound ScRuSi. Polycrystalline samples of ScRuSi were prepared by an arc-melting method. The as-prepared samples were identified as the orthorhombic Co2P-type o-ScRuSi by the powder X-ray diffraction analysis. Electrical resistivity measurement shows o-ScRuSi to be a metal which superconducts below a Tc of 3.1 K, and the upper critical field {mu}0Hc2(0) is estimated to be 0.87 T. The magnetization and specific heat measurements confirm the bulk type-II superconductivity in o-ScRuSi, with the specific heat jump within the BCS weak coupling limit. o-ScRuSi is the first Co2P-type superconductor containing scandium. After annealing at 1273 K for a week, o-ScRuSi transforms into the hexagonal Fe2P-type h-ScRuSi, and the latter is a Pauli-paramagnetic metal with no superconductivity observed above 1.8 K.