Do you want to publish a course? Click here

Colloidal topological insulators

149   0   0.0 ( 0 )
 Added by Daniel de las Heras
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological insulators insulate in the bulk but exhibit robust conducting edge states protected by the topology of the bulk material. Here, we design a colloidal topological insulator and demonstrate experimentally the occurrence of edge states in a classical particle system. Magnetic colloidal particles travel along the edge of two distinct magnetic lattices. We drive the colloids with a uniform external magnetic field that performs a topologically non-trivial modulation loop. The loop induces closed orbits in the bulk of the magnetic lattices. At the edge, where both lattices merge, the colloids perform skipping orbits trajectories and hence edge-transport. We also observe paramagnetic and diamagnetic colloids moving in opposite directions along the edge between two inverted patterns; the analogue of a quantum spin Hall effect in topological insulators. We present a new, robust, and versatile way of transporting colloidal particles, enabling new pathways towards lab on a chip applications.



rate research

Read More

Granular conductors form an artificially engineered class of solid state materials wherein the microstructure can be tuned to mimic a wide range of otherwise inaccessible physical systems. At the same time, topological insulators (TIs) have become a cornerstone of modern condensed matter physics as materials hosting metallic states on the surface and insulating in the bulk. However it remains to be understood how granularity affects this new and exotic phase of matter. We perform electrical transport experiments on highly granular topological insulator thin films of Bi$_2$Se$_3$ and reveal remarkable properties. We observe clear signatures of topological surface states despite granularity with distinctly different properties from conventional bulk TI systems including sharp surface state coupling-decoupling transitions, large surface state penetration depths and exotic Berry phase effects. We present a model which explains these results. Our findings illustrate that granularity can be used to engineer designer TIs, at the same time allowing easy access to the Dirac-fermion physics that is inaccessible in single crystal systems.
In this article, we will give a brief introduction to the topological insulators. We will briefly review some of the recent progresses, from both theoretical and experimental sides. In particular, we will emphasize the recent progresses achieved in China.
Topological crystalline insulators (TCIs) are insulating materials whose topological property relies on generic crystalline symmetries. Based on first-principles calculations, we study a three-dimensional (3D) crystal constructed by stacking two-dimensional TCI layers. Depending on the inter-layer interaction, the layered crystal can realize diverse 3D topological phases characterized by two mirror Chern numbers (MCNs) ($mu_1,mu_2$) defined on inequivalent mirror-invariant planes in the Brillouin zone. As an example, we demonstrate that new TCI phases can be realized in layered materials such as a PbSe (001) monolayer/h-BN heterostructure and can be tuned by mechanical strain. Our results shed light on the role of the MCNs on inequivalent mirror-symmetric planes in reciprocal space and open new possibilities for finding new topological materials.
Motivated by the discovery of the quantum anomalous Hall effect in Cr-doped ce{(Bi,Sb)2Te3} thin films, we study the generic states for magnetic topological insulators and explore the physical properties for both magnetism and itinerant electrons. First-principles calculations are exploited to investigate the magnetic interactions between magnetic Co atoms adsorbed on the ce{Bi2Se3} (111) surface. Due to the absence of inversion symmetry on the surface, there are Dzyaloshinskii-Moriya-like twisted spin interactions between the local moments of Co ions. These nonferromagnetic interactions twist the collinear spin configuration of the ferromagnet and generate various magnetic orders beyond a simple ferromagnet. Among them, the spin spiral state generates alternating counterpropagating modes across each period of spin states, and the skyrmion lattice even supports a chiral mode around the core of each skyrmion. The skyrmion lattice opens a gap at the surface Dirac point, resulting in the anomalous Hall effect. These results may inspire further experimental investigation of magnetic topological insulators.
We investigate in a fully quantum-mechanical manner how the many-body excitation spectrum of topological insulators is affected by the presence of long-range Coulomb interactions. In the one-dimensional Su-Schrieffer-Heeger model and its mirror-symmetric variant strongly localized plasmonic excitations are observed which originate from topologically non-trivial single-particle states. These textit{topological plasmons} inherit some of the characteristics of their constituent topological single-particle states, but they are not equally well protected against disorder due to the admixture of non-topological bulk single-particle states in the polarization function. The strength of the effective Coulomb interactions is also shown to have strong effects on the plasmonic modes. Furthermore, we show how external modifications via dielectric screening and applied electric fields with distinct symmetries can be used to study topological plasmons, thus allowing for experimental verification of our atomistic predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا