No Arabic abstract
We use apertureless scattering near-field optical microscopy (SNOM) to investigate the nanoscale optical response of vanadium dioxide (VO2) thin films through a temperature-induced insulator-to-metal transition (IMT). We compare images of the transition at both mid-infrared (MIR) and terahertz (THz) frequencies, using a custom-built broadband THz-SNOM compatible with both cryogenic and elevated temperatures. We observe that the character of spatial inhomogeneities in the VO2 film strongly depends on the probing frequency. In addition, we find that individual insulating (or metallic) domains have a temperature-dependent optical response, in contrast to the assumptions of a classical first-order phase transition. We discuss these results in light of dynamical mean-field theory calculations of the dimer Hubbard model recently applied to VO2.
The metal-insulator transition (MIT) in vanadium dioxide (VO2) has the potential to lead to a number of disruptive technologies, including ultra-fast data storage, optical switches, and transistors which move beyond the limitations of silicon. For applications, VO2 films are deposited on crystalline substrates to prevent cracking observed in bulk VO2 crystals across the thermally driven MIT. Near the MIT, VO2 films exhibit nanoscale coexistence between metallic and insulating phases, which opens up further potential applications such as memristors, tunable capacitors, and optically engineered devices such as perfect absorbers. It is generally believed that the formation of phase domains must be affected to some extent by random processes which lead to unreliable performance in nanoscale MIT based devices. Here we show that nanoscale randomness is suppressed in the thermally driven MIT in sputtered VO2 films; the observed domain patterns of metallic and insulating phases in the vicinity of the MIT in these films behave in a strikingly reproducible way. This result opens the door for realizing reliable nanoscale VO2 devices.
We investigate the electronic and structural changes at the nanoscale in vanadium dioxide (VO2) in the vicinity of its thermally driven phase transition. Both electronic and structural changes exhibit phase coexistence leading to percolation. In addition, we observe a dichotomy between the local electronic and structural transitions. Nanoscale x-ray diffraction reveals local, non-monotonic switching of the lattice structure, a phenomenon that is not seen in the electronic insulator-to-metal transition mapped by near-field infrared microscopy.
Phase competition in correlated oxides offers tantalizing opportunities as many intriguing physical phenomena occur near the phase transitions. Owing to a sharp metal-insulator transition (MIT) near room temperature, correlated vanadium dioxide (VO2) exhibits a strong competition between insulating and metallic phases that is important for practical applications. However, the phase boundary undergoes strong modification when strain is involved, yielding complex phase transitions. Here, we report the emergence of the nanoscale M2 phase domains in VO2 epitaxial films under anisotropic strain relaxation. The phase states of the films are imaged by multi-length-scale probes, detecting the structural and electrical properties in individual local domains. Competing evolution of the M1 and M2 phases indicates a critical role of lattice-strain on both the stability of the M2 Mott phase and the energetics of the MIT in VO2 films. This study demonstrates how strain engineering can be utilized to design phase states, which allow deliberate control of MIT behavior at the nanoscale in epitaxial VO2 films.
Long regarded as a model system for studying insulator-to-metal phase transitions, the correlated electron material vanadium dioxide (VO$_2$) is now finding novel uses in device applications. Two of its most appealing aspects are its accessible transition temperature ($sim$341 K) and its rich phase diagram. Strain can be used to selectively stabilize different VO$_2$ insulating phases by tuning the competition between electron and lattice degrees of freedom. It can even break the mesoscopic spatial symmetry of the transition, leading to a quasi-periodic ordering of insulating and metallic nanodomains. Nanostructuring of strained VO$_2$ could potentially yield unique components for future devices. However, the most spectacular property of VO$_2$ - its ultrafast transition - has not yet been studied on the length scale of its phase heterogeneity. Here, we use ultrafast near-field microscopy in the mid-infrared to study individual, strained VO$_2$ nanobeams on the 10 nm scale. We reveal a previously unseen correlation between the local steady-state switching susceptibility and the local ultrafast response to below-threshold photoexcitation. These results suggest that it may be possible to tailor the local photo-response of VO$_2$ using strain and thereby realize new types of ultrafast nano-optical devices.
We use optical pump--THz probe spectroscopy at low temperatures to study the hot carrier response in thin Bi$_2$Se$_3$ films of several thicknesses, allowing us to separate the bulk from the surface transient response. We find that for thinner films the photoexcitation changes the transport scattering rate and reduces the THz conductivity, which relaxes within 10 picoseconds (ps). For thicker films, the conductivity increases upon photoexcitation and scales with increasing both the film thickness and the optical fluence, with a decay time of approximately 5 ps as well as a much higher scattering rate. These different dynamics are attributed to the surface and bulk electrons, respectively, and demonstrate that long-lived mobile surface photo-carriers can be accessed independently below certain film thicknesses for possible optoelectronic applications.