Do you want to publish a course? Click here

Robust Keyframe-based Dense SLAM with an RGB-D Camera

67   0   0.0 ( 0 )
 Added by Guofeng Zhang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, we present RKD-SLAM, a robust keyframe-based dense SLAM approach for an RGB-D camera that can robustly handle fast motion and dense loop closure, and run without time limitation in a moderate size scene. It not only can be used to scan high-quality 3D models, but also can satisfy the demand of VR and AR applications. First, we combine color and depth information to construct a very fast keyframe-based tracking method on a CPU, which can work robustly in challenging cases (e.g.~fast camera motion and complex loops). For reducing accumulation error, we also introduce a very efficient incremental bundle adjustment (BA) algorithm, which can greatly save unnecessary computation and perform local and global BA in a unified optimization framework. An efficient keyframe-based depth representation and fusion method is proposed to generate and timely update the dense 3D surface with online correction according to the refined camera poses of keyframes through BA. The experimental results and comparisons on a variety of challenging datasets and TUM RGB-D benchmark demonstrate the effectiveness of the proposed system.



rate research

Read More

Dynamic environments are challenging for visual SLAM since the moving objects occlude the static environment features and lead to wrong camera motion estimation. In this paper, we present a novel dense RGB-D SLAM solution that simultaneously accomplishes the dynamic/static segmentation and camera ego-motion estimation as well as the static background reconstructions. Our novelty is using optical flow residuals to highlight the dynamic semantics in the RGB-D point clouds and provide more accurate and efficient dynamic/static segmentation for camera tracking and background reconstruction. The dense reconstruction results on public datasets and real dynamic scenes indicate that the proposed approach achieved accurate and efficient performances in both dynamic and static environments compared to state-of-the-art approaches.
This work proposes a RGB-D SLAM system specifically designed for structured environments and aimed at improved tracking and mapping accuracy by relying on geometric features that are extracted from the surrounding. Structured environments offer, in addition to points, also an abundance of geometrical features such as lines and planes, which we exploit to design both the tracking and mapping components of our SLAM system. For the tracking part, we explore geometric relationships between these features based on the assumption of a Manhattan World (MW). We propose a decoupling-refinement method based on points, lines, and planes, as well as the use of Manhattan relationships in an additional pose refinement module. For the mapping part, different levels of maps from sparse to dense are reconstructed at a low computational cost. We propose an instance-wise meshing strategy to build a dense map by meshing plane instances independently. The overall performance in terms of pose estimation and reconstruction is evaluated on public benchmarks and shows improved performance compared to state-of-the-art methods. The code is released at url{https://github.com/yanyan-li/PlanarSLAM}
We propose a novel object-augmented RGB-D SLAM system that is capable of constructing a consistent object map and performing relocalisation based on centroids of objects in the map. The approach aims to overcome the view dependence of appearance-based relocalisation methods using point features or images. During the map construction, we use a pre-trained neural network to detect objects and estimate 6D poses from RGB-D data. An incremental probabilistic model is used to aggregate estimates over time to create the object map. Then in relocalisation, we use the same network to extract objects-of-interest in the `lost frames. Pairwise geometric matching finds correspondences between map and frame objects, and probabilistic absolute orientation followed by application of iterative closest point to dense depth maps and object centroids gives relocalisation. Results of experiments in desktop environments demonstrate very high success rates even for frames with widely different viewpoints from those used to construct the map, significantly outperforming two appearance-based methods.
We introduce the task of dense captioning in 3D scans from commodity RGB-D sensors. As input, we assume a point cloud of a 3D scene; the expected output is the bounding boxes along with the descriptions for the underlying objects. To address the 3D object detection and description problems, we propose Scan2Cap, an end-to-end trained method, to detect objects in the input scene and describe them in natural language. We use an attention mechanism that generates descriptive tokens while referring to the related components in the local context. To reflect object relations (i.e. relative spatial relations) in the generated captions, we use a message passing graph module to facilitate learning object relation features. Our method can effectively localize and describe 3D objects in scenes from the ScanRefer dataset, outperforming 2D baseline methods by a significant margin (27.61% [email protected]).
This paper investigates two typical image-type representations for event camera-based tracking: time surface (TS) and event map (EM). Based on the original TS-based tracker, we make use of these two representations complementary strengths to develop an enhanced version. The proposed tracker consists of a general strategy to evaluate the optimization problems degeneracy online and then switch proper representations. Both TS and EM are motion- and scene-dependent, and thus it is important to figure out their limitations in tracking. We develop six tracker variations and conduct a thorough comparison of them on sequences covering various scenarios and motion complexities. We release our implementations and detailed results to benefit the research community on event cameras: https: //github.com/gogojjh/ESVO_extension.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا