Do you want to publish a course? Click here

Infinite Projected Entangled-Pair State algorithm for ruby and triangle-honeycomb lattices

125   0   0.0 ( 0 )
 Added by Saeed S. Jahromi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The infinite Projected Entangled-Pair State (iPEPS) algorithm is one of the most efficient techniques for studying the ground-state properties of two-dimensional quantum lattice Hamiltonians in the thermodynamic limit. Here, we show how the algorithm can be adapted to explore nearest-neighbor local Hamiltonians on the ruby and triangle-honeycomb lattices, using the Corner Transfer Matrix (CTM) renormalization group for 2D tensor network contraction. Additionally, we show how the CTM method can be used to calculate the ground state fidelity per lattice site and the boundary density operator and entanglement entropy (EE) on an infinite cylinder. As a benchmark, we apply the iPEPS method to the ruby model with anisotropic interactions and explore the ground-state properties of the system. We further extract the phase diagram of the model in different regimes of the couplings by measuring two-point correlators, ground state fidelity and EE on an infinite cylinder. Our phase diagram is in agreement with previous studies of the model by exact diagonalization.



rate research

Read More

253 - Philippe Corboz 2016
We present a scheme to perform an iterative variational optimization with infinite projected entangled-pair states (iPEPS), a tensor network ansatz for a two-dimensional wave function in the thermodynamic limit, to compute the ground state of a local Hamiltonian. The method is based on a systematic summation of Hamiltonian contributions using the corner transfer-matrix method. Benchmark results for challenging problems are presented, including the 2D Heisenberg model, the Shastry-Sutherland model, and the t-J model, which show that the variational scheme yields considerably more accurate results than the previously best imaginary time evolution algorithm, with a similar computational cost and with a faster convergence towards the ground state.
74 - S.P.G. Crone , P. Corboz 2019
We present an approach to identify topological order based on unbiased infinite projected entangled-pair states (iPEPS) simulations, i.e. where we do not impose a virtual symmetry on the tensors during the optimization of the tensor network ansatz. As an example we consider the ground state of the toric code model in a magnetic field exhibiting $Z_2$ topological order. The optimization is done by an efficient energy minimization approach based on a summation of tensor environments to compute the gradient. We show that the optimized tensors, when brought into the right gauge, are approximately $Z_2$ symmetric, and they can be fully symmetrized a posteriori to generate a stable topologically ordered state, yielding the correct topological entanglement entropy and modular S and U matrices. To compute the latter we develop a variant of the corner-transfer matrix method which is computationally more efficient than previous approaches based on the tensor renormalization group.
The recently developed stochastic gradient method combined with Monte Carlo sampling techniques [PRB {bf 95}, 195154 (2017)] offers a low scaling and accurate method to optimize the projected entangled pair states (PEPS). We extended this method to the fermionic PEPS (fPEPS). To simplify the implementation, we introduce a fermi arrow notation to specify the order of the fermion operators in the virtual entangled EPR pairs. By defining some local operation rules associated with the fermi arrows, one can implement fPEPS algorithms very similar to that of standard PEPS. We benchmark the method for the interacting spinless fermion models, and the t-J models. The numerical calculations show that the gradient optimization greatly improves the results of simple update method. Furthermore, much larger virtual bond dimensions ($D$) and truncation dimensions ($D_c$) than those of boson and spin systems are necessary to converge the results. The method therefore offer a powerful tool to simulate fermion systems because it has much lower scaling than the direct contraction methods.
We analyze a criterion which guarantees that the ground states of certain many body systems are stable under perturbations. Specifically, we consider PEPS, which are believed to provide an efficient description, based on local tensors, for the low energy physics arising from local interactions. In order to assess stability in the framework of PEPS, one thus needs to understand how physically allowed perturbations of the local tensor affect the properties of the global state. In this paper, we show that a restricted version of the Local Topological Quantum Order (LTQO) condition provides a checkable criterion which allows to assess the stability of local properties of PEPS under physical perturbations. We moreover show that LTQO itself is stable under perturbations which preserve the spectral gap, leading to nontrivial examples of PEPS which possess LTQO and are thus stable under arbitrary perturbations.
Variational Monte Carlo studies employing projected entangled-pair states (PEPS) have recently shown that they can provide answers on long-standing questions such as the nature of the phases in the two-dimensional $J_1 - J_2$ model. The sampling in these Monte Carlo algorithms is typically performed with Markov Chain Monte Carlo algorithms employing local update rules, which often suffer from long autocorrelation times and interdependent samples. We propose a sampling algorithm that generates independent samples from a PEPS, bypassing all problems related to finite autocorrelation times. This algorithm is a generalization of an existing direct sampling algorithm for unitary tensor networks. We introduce an auxiliary probability distribution from which independent samples can be drawn, and combine it with importance sampling in order to evaluate expectation values accurately. We benchmark our algorithm on the classical Ising model and on variational optimization of two-dimensional quantum spin models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا