Do you want to publish a course? Click here

Automatic Extraction of Commonsense LocatedNear Knowledge

53   0   0.0 ( 0 )
 Added by Frank F. Xu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

LocatedNear relation is a kind of commonsense knowledge describing two physical objects that are typically found near each other in real life. In this paper, we study how to automatically extract such relationship through a sentence-level relation classifier and aggregating the scores of entity pairs from a large corpus. Also, we release two benchmark datasets for evaluation and future research.



rate research

Read More

We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge with canonical templates, commonsense KBs only store loosely structured open-text descriptions of knowledge. We posit that an important step toward automatic commonsense completion is the development of generative models of commonsense knowledge, and propose COMmonsEnse Transformers (COMET) that learn to generate rich and diverse commonsense descriptions in natural language. Despite the challenges of commonsense modeling, our investigation reveals promising results when implicit knowledge from deep pre-trained language models is transferred to generate explicit knowledge in commonsense knowledge graphs. Empirical results demonstrate that COMET is able to generate novel knowledge that humans rate as high quality, with up to 77.5% (ATOMIC) and 91.7% (ConceptNet) precision at top 1, which approaches human performance for these resources. Our findings suggest that using generative commonsense models for automatic commonsense KB completion could soon be a plausible alternative to extractive methods.
In this paper, we present CogNet, a knowledge base (KB) dedicated to integrating three types of knowledge: (1) linguistic knowledge from FrameNet, which schematically describes situations, objects and events. (2) world knowledge from YAGO, Freebase, DBpedia and Wikidata, which provides explicit knowledge about specific instances. (3) commonsense knowledge from ConceptNet, which describes implicit general facts. To model these different types of knowledge consistently, we introduce a three-level unified frame-styled representation architecture. To integrate free-form commonsense knowledge with other structured knowledge, we propose a strategy that combines automated labeling and crowdsourced annotation. At present, CogNet integrates 1,000+ semantic frames from linguistic KBs, 20,000,000+ frame instances from world KBs, as well as 90,000+ commonsense assertions from commonsense KBs. All these data can be easily queried and explored on our online platform, and free to download in RDF format for utilization under a CC-BY-SA 4.0 license. The demo and data are available at http://cognet.top/.
Conditional text generation has been a challenging task that is yet to see human-level performance from state-of-the-art models. In this work, we specifically focus on the Commongen benchmark, wherein the aim is to generate a plausible sentence for a given set of input concepts. Despite advances in other tasks, large pre-trained language models that are fine-tuned on this dataset often produce sentences that are syntactically correct but qualitatively deviate from a human understanding of common sense. Furthermore, generated sequences are unable to fulfill such lexical requirements as matching part-of-speech and full concept coverage. In this paper, we explore how commonsense knowledge graphs can enhance model performance, with respect to commonsense reasoning and lexically-constrained decoding. We propose strategies for enhancing the semantic correctness of the generated text, which we accomplish through: extracting commonsense relations from Conceptnet, injecting these relations into the Unified Language Model (UniLM) through attention mechanisms, and enforcing the aforementioned lexical requirements through output constraints. By performing several ablations, we find that commonsense injection enables the generation of sentences that are more aligned with human understanding, while remaining compliant with lexical requirements.
Commonsense knowledge is crucial for artificial intelligence systems to understand natural language. Previous commonsense knowledge acquisition approaches typically rely on human annotations (for example, ATOMIC) or text generation models (for example, COMET.) Human annotation could provide high-quality commonsense knowledge, yet its high cost often results in relatively small scale and low coverage. On the other hand, generation models have the potential to automatically generate more knowledge. Nonetheless, machine learning models often fit the training data well and thus struggle to generate high-quality novel knowledge. To address the limitations of previous approaches, in this paper, we propose an alternative commonsense knowledge acquisition framework DISCOS (from DIScourse to COmmonSense), which automatically populates expensive complex commonsense knowledge to more affordable linguistic knowledge resources. Experiments demonstrate that we can successfully convert discourse knowledge about eventualities from ASER, a large-scale discourse knowledge graph, into if-then commonsense knowledge defined in ATOMIC without any additional annotation effort. Further study suggests that DISCOS significantly outperforms previous supervised approaches in terms of novelty and diversity with comparable quality. In total, we can acquire 3.4M ATOMIC-like inferential commonsense knowledge by populating ATOMIC on the core part of ASER. Codes and data are available at https://github.com/HKUST-KnowComp/DISCOS-commonsense.
Commonsense knowledge (CSK) supports a variety of AI applications, from visual understanding to chatbots. Prior works on acquiring CSK, such as ConceptNet, have compiled statements that associate concepts, like everyday objects or activities, with properties that hold for most or some instances of the concept. Each concept is treated in isolation from other concepts, and the only quantitative measure (or ranking) of properties is a confidence score that the statement is valid. This paper aims to overcome these limitations by introducing a multi-faceted model of CSK statements and methods for joint reasoning over sets of inter-related statements. Our model captures four different dimensions of CSK statements: plausibility, typicality, remarkability and salience, with scoring and ranking along each dimension. For example, hyenas drinking water is typical but not salient, whereas hyenas eating carcasses is salient. For reasoning and ranking, we develop a method with soft constraints, to couple the inference over concepts that are related in in a taxonomic hierarchy. The reasoning is cast into an integer linear programming (ILP), and we leverage the theory of reduction costs of a relaxed LP to compute informative rankings. This methodology is applied to several large CSK collections. Our evaluation shows that we can consolidate these inputs into much cleaner and more expressive knowledge. Results are available at https://dice.mpi-inf.mpg.de.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا