Do you want to publish a course? Click here

Wavelet-based regularization of the Galerkin truncated three-dimensional incompressible Euler flows

238   0   0.0 ( 0 )
 Added by Marie Farge
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present numerical simulations of the three-dimensional Galerkin truncated incompressible Euler equations that we integrate in time while regularizing the solution by applying a wavelet-based denoising. For this, at each time step, the vorticity filed is decomposed into wavelet coefficients, that are split into strong and weak coefficients, before reconstructing them in physical space to obtain the corresponding coherent and incoherent vorticities. Both components are multiscale and orthogonal to each other. Then, by using the Biot--Savart kernel, one obtains the coherent and incoherent velocities. Advancing the coherent flow in time, while filtering out the noise-like incoherent flow, models turbulent dissipation and corresponds to an adaptive regularization. In order to track the flow evolution in both space and scale, a safety zone is added in wavelet coefficient space to the coherent wavelet coefficients. It is shown that the coherent flow indeed exhibits an intermittent nonlinear dynamics and a $k^{-5/3}$ energy spectrum, where $k$ is the wavenumber, characteristic of { three-dimensional homogeneous isotropic turbulence}. Finally, we compare the dynamical and statistical properties of Euler flows subjected to four kinds of regularizations: dissipative (Navier--Stokes), hyperdissipative (iterated Laplacian), dispersive (Euler--Voigt) and wavelet-based regularizations.



rate research

Read More

The interplay between incompressibility and stratification can lead to non-conservation of horizontal momentum in the dynamics of a stably stratified incompressible Euler fluid filling an infinite horizontal channel between rigid upper and lower plates. Lack of conservation occurs even though in this configuration only vertical external forces act on the system. This apparent paradox was seemingly first noticed by Benjamin (J. Fluid Mech., vol. 165, 1986, pp. 445-474) in his classification of the invariants by symmetry groups with the Hamiltonian structure of the Euler equations in two dimensional settings, but it appears to have been largely ignored since. By working directly with the motion equations, the paradox is shown here to be a consequence of the rigid lid constraint coupling through incompressibility with the infinite inertia of the far ends of the channel, assumed to be at rest in hydrostatic equilibrium. Accordingly, when inertia is removed by eliminating the stratification, or, remarkably, by using the Boussinesq approximation of uniform density for the inertia terms, horizontal momentum conservation is recovered. This interplay between constraints,action at a distance by incompressibility, and inertia is illustrated by layer-averaged exact results, two-layer long-wave models, and direct numerical simulations of the incompressible Euler equations with smooth stratification.
In fluid mechanics, a lot of authors have been reporting analytical solutions of Euler and Navier-Stokes equations. But there is an essential deficiency of non-stationary solutions indeed. In our presentation, we explore the case of non-stationary flows of the Euler equations for incompressible fluids, which should conserve the Bernoulli-function to be invariant for the aforementioned system. We use previously suggested ansatz for solving of the system of Navier-Stokes equations (which is proved to have the analytical way to present its solution in case of conserving the Bernoulli-function to be invariant for such the type of the flows). Conditions for the existence of exact solution of the aforementioned type for the Euler equations are obtained. The restrictions at choosing of the form of the 3D nonstationary solution for the given constant Bernoulli-function B are considered. We should especially note that pressure field should be calculated from the given constant Bernoulli-function B, if all the components of velocity field are obtained.
Transport and mixing of scalar quantities in fluid flows is ubiquitous in industry and Nature. Turbulent flows promote efficient transport and mixing by their inherent randomness. Laminar flows lack such a natural mixing mechanism and efficient transport is far more challenging. However, laminar flow is essential to many problems and insight into its transport characteristics of great importance. Laminar transport, arguably, is best described by the Lagrangian fluid motion (`advection) and the geometry, topology and coherence of fluid trajectories. Efficient laminar transport being equivalent to `chaotic advection is a key finding of this approach. The Lagrangian framework enables systematic analysis and design of laminar flows. However, the gap between scientific insights into Lagrangian transport and technological applications is formidable primarily for two reasons. First, many studies concern two-dimensional (2D) flows yet the real world is three dimensional (3D). Second, Lagrangian transport is typically investigated for idealised flows yet practical relevance requires studies on realistic 3D flows. The present review aims to stimulate further development and utilisation of know-how on 3D Lagrangian transport and its dissemination to practice. To this end 3D practical flows are categorised into canonical problems. First, to expose the diversity of Lagrangian transport and create awareness of its broad relevance. Second, to enable knowledge transfer both within and between scientific disciplines. Third, to reconcile practical flows with fundamentals on Lagrangian transport and chaotic advection. This may be a first incentive to structurally integrate the `Lagrangian mindset into the analysis and design of 3D practical flows.
Incompressible 3D Euler equations develop high vorticity in very thin pancake-like regions from generic large-scale initial conditions. In this work we propose an exact solution of the Euler equations for the asymptotic pancake evolution. This solution combines a shear flow aligned with an asymmetric straining flow, and is characterized by a single asymmetry parameter and an arbitrary transversal vorticity profile. The analysis is based on detailed comparison with numerical simulations performed using a pseudo-spectral method in anisotropic grids of up to 972 x 2048 x 4096.
The incompressible three-dimensional ideal flows develop very thin pancake-like regions of increasing vorticity. These regions evolve with the scaling $omega_{max}(t)proptoell(t)^{-2/3}$ between the vorticity maximum and pancake thickness, and provide the leading contribution to the energy spectrum, where the gradual formation of the Kolmogorov interval $E_{k}propto k^{-5/3}$ is observed for some initial flows [Agafontsev et. al, Phys. Fluids 27, 085102 (2015)]. With the massive numerical simulations, in the present paper we study the influence of initial conditions on the processes of pancake formation and the Kolmogorov energy spectrum development.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا