Do you want to publish a course? Click here

A simplified model based on self-organized criticality framework for the seismic assessment of urban areas

101   0   0.0 ( 0 )
 Added by Andrea Rapisarda
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The analysis of the seismic vulnerability of urban centres has received a great attention in the last century. In order to estimate the seismic vulnerability of a densely populated urban area, it would in principle be necessary to develop in-depth analyses for predicting the dynamic behaviour of the individual buildings and their structural aggregation. Such analyses, however, are extremely cost-intensive, require great processing time and above all expertise judgement. It is therefore very useful to define simplified rules for estimating the seismic vulnerability of whole urban areas. In the last decades, the Self-Organized Criticality (SOC) scenario has gained increasing credibility as a mathematical framework for explaining a large number of naturally occurring extreme events, from avalanches to earthquakes dynamics, from bubbles and crises in financial markets to the extinction of species in the evolution or the behaviour of human brain activity. All these examples show the intrinsic tendency common to many phenomena to spontaneously organize into a dynamical critical state, whose signature is the presence of a power law behaviour in the frequency distribution of events. In this context, the Olami-Feder- Christensen (OFC) model, introduced in 1992, has played a key role in modelling earthquakes phenomenology. The aim of the present paper is proposing an agent-based model of earthquake dynamics, based on the OFC self- organized criticality framework, in order to evaluate the effects of a critical sequence of seismic events on a given large urban area during a given interval of time. The further integration of a GIS database within a software environment for agent-based simulations, will allow to perform a preliminary parametric study of these effects on real datasets. The model could be useful for defining planning strategies for seismic risk reduction



rate research

Read More

In order to estimate the seismic vulnerability of a densely populated urban area, it would in principle be necessary to evaluate the dynamic behaviour of individual and aggregate buildings. These detailed seismic analyses, however, are extremely cost-intensive and require great processing time and expertise judgment. The aim of the present study is to propose a new methodology able to combine information and tools coming from different scientific fields in order to reproduce the effects of a seismic input in urban areas with known geological features and to estimate the entity of the damages caused on existing buildings. In particular, we present new software called ABES (Agent-Based Earthquake Simulator), based on a Self-Organized Criticality framework, which allows to evaluate the effects of a sequence of seismic events on a certain large urban area during a given interval of time. The integration of Geographic Information System (GIS) data sets, concerning both geological and urban information about the territory of Avola (Italy), allows performing a parametric study of these effects on a real context as a case study. The proposed new approach could be very useful in estimating the seismic vulnerability and defining planning strategies for seismic risk reduction in large urban areas
77 - Hiroyasu Inoue 2015
This study examine the difference in the size of avalanches among industries triggered by demand shocks, which can be rephrased by control of the economy or fiscal policy, and by using the production-inventory model and observed data. We obtain the following results. (1) The size of avalanches follows power law. (2) The mean sizes of avalanches for industries are diverse but their standard deviations highly overlap. (3) We compare the simulation with an input-output table and with the actual policies. They are compatible.
The concept of percolation is combined with a self-consistent treatment of the interaction between the dynamics on a lattice and the external drive. Such a treatment can provide a mechanism by which the system evolves to criticality without fine tuning, thus offering a route to self-organized criticality (SOC) which in many cases is more natural than the weak random drive combined with boundary loss/dissipation as used in standard sand-pile formulations. We introduce a new metaphor, the e-pile model, and a formalism for electric conduction in random media to compute critical exponents for such a system. Variations of the model apply to a number of other physical problems, such as electric plasma discharges, dielectric relaxation, and the dynamics of the Earths magnetotail.
Critical exponents of the infinitely slowly driven Zhang model of self-organized criticality are computed for $d=2,3$ with particular emphasis devoted to the various roughening exponents. Besides confirming recent estimates of some exponents, new quantities are monitored and their critical exponents computed. Among other results, it is shown that the three dimensional exponents do not coincide with the Bak, Tang, and Wiesenfeld (abelian) model and that the dynamical exponent as computed from the correlation length and from the roughness of the energy profile do not necessarily coincide as it is usually implicitly assumed. An explanation for this is provided. The possibility of comparing these results with those obtained from Renormalization Group arguments is also briefly addressed.
The well known Sandpile model of self-organized criticality generates avalanches of all length and time scales, without tuning any parameters. In the original models the external drive is randomly selected. Here we investigate a drive which depends on the present state of the system, namely the effect of favoring sites with a certain height in the deposition process. If sites with height three are favored, the system stays in a critical state. Our numerical results indicate the same universality class as the original model with random depositition, although the stationary state is approached very differently. In constrast, when favoring sites with height two, only avalanches which cover the entire system occur. Furthermore, we investigate the distributions of sites with a certain height, as well as the transient processes of the different variants of the external drive.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا