No Arabic abstract
Much work has been done to identify which binary codes can be represented by collections of open convex or closed convex sets. While not all binary codes can be realized by such sets, here we prove that every binary code can be realized by convex sets when there is no restriction on whether the sets are all open or closed. We achieve this by constructing a convex realization for an arbitrary code with $k$ nonempty codewords in $mathbb{R}^{k-1}$. This result justifies the usual restriction of the definition of convex neural codes to include only those that can be realized by receptive fields that are all either open convex or closed convex. We also show that the dimension of our construction cannot in general be lowered.
We prove that every finite family of convex sets in the plane satisfying the $(4,3)$-property can be pierced by $9$ points. This improves the bound of $13$ proved by Gyarfas, Kleitman, and Toth in 2001.
S.Janson [Poset limits and exchangeable random posets, Combinatorica 31 (2011), 529--563] defined limits of finite posets in parallel to the emerging theory of limits of dense graphs. We prove that each poset limit can be represented as a kernel on the unit interval with the standard order, thus answering an open question of Janson. We provide two proofs: real-analytic and combinatorial. The combinatorial proof is based on a Szemeredi-type Regularity Lemma for posets which may be of independent interest. Also, as a by-product of the analytic proof, we show that every atomless ordered probability space admits a measure-preserving and almost order-preserving map to the unit interval.
Given a finite set $A subseteq mathbb{R}^d$, points $a_1,a_2,dotsc,a_{ell} in A$ form an $ell$-hole in $A$ if they are the vertices of a convex polytope which contains no points of $A$ in its interior. We construct arbitrarily large point sets in general position in $mathbb{R}^d$ having no holes of size $O(4^ddlog d)$ or more. This improves the previously known upper bound of order $d^{d+o(d)}$ due to Valtr. The basic version of our construction uses a certain type of equidistributed point sets, originating from numerical analysis, known as $(t,m,s)$-nets or $(t,s)$-sequences, yielding a bound of $2^{7d}$. The better bound is obtained using a variant of $(t,m,s)$-nets, obeying a relaxed equidistribution condition.
We show that real model sets with real internal spaces are determined, up to translation and changes of density zero by their two- and three-point correlations. We also show that there exist pairs of real (even one dimensional) aperiodic model sets with internal spaces that are products of real spaces and finite cyclic groups whose two- and three-point correlations are identical but which are not related by either translation or inversion of their windows. All these examples are pure point diffractive. Placed in the context of ergodic uniformly discrete point processes, the result is that real point processes of model sets based on real internal windows are determined by their second and third moments.
Hellys theorem and its variants show that for a family of convex sets in Euclidean space, local intersection patterns influence global intersection patterns. A classical result of Eckhoff in 1988 provided an optimal fractional Helly theorem for axis-aligned boxes, which are Cartesian products of line segments. Answering a question raised by Barany and Kalai, and independently Lew, we generalize Eckhoffs result to Cartesian products of convex sets in all dimensions. In particular, we prove that given $alpha in (1-frac{1}{t^d},1]$ and a finite family $mathcal{F}$ of Cartesian products of convex sets $prod_{iin[t]}A_i$ in $mathbb{R}^{td}$ with $A_isubset mathbb{R}^d$ if at least $alpha$-fraction of the $(d+1)$-tuples in $mathcal{F}$ are intersecting then at least $(1-(t^d(1-alpha))^{1/(d+1)})$-fraction of sets in $mathcal{F}$ are intersecting. This is a special case of a more general result on intersections of $d$-Leray complexes. We also provide a construction showing that our result on $d$-Leray complexes is optimal. Interestingly the extremal example is representable as a family of cartesian products of convex sets, implying the bound $alpha>1-frac{1}{t^d}$ and the fraction $(1-(t^d(1-alpha))^{1/(d+1)})$ above are also best possible. The well-known optimal construction for fractional Helly theorem for convex sets in $mathbb{R}^d$ does not have $(p,d+1)$-condition for sublinear $p$. Inspired by this we give constructions showing that, somewhat surprisingly, imposing additional $(p,d+1)$-condition has negligible effect on improving the quantitative bounds in neither the fractional Helly theorem for convex sets nor Cartesian products of convex sets. Our constructions offer a rich family of distinct extremal configurations for fractional Helly theorem, implying in a sense that the optimal bound is stable.