No Arabic abstract
We describe polarization of the Sunyaev-Zeldovich (SZ) effect associated with electron pressure anisotropy likely present in the intracluster medium (ICM). The ICM is an astrophysical example of a weakly collisional plasma where the Larmor frequencies of charged particles greatly exceed their collision frequencies. This permits formation of pressure anisotropies, driven by evolving magnetic fields via adiabatic invariance, or by heat fluxes. SZ polarization arises in the process of Compton scattering of the cosmic microwave background (CMB) photons off the thermal ICM electrons due to the difference in the characteristic thermal velocities of the electrons along two mutually orthogonal directions in the sky plane. The signal scales linearly with the optical depth of the region containing large-scale correlated anisotropy, and with the degree of anisotropy itself. It has the same spectral dependence as the polarization induced by cluster motion with respect to the CMB frame (kinematic SZ effect polarization), but can be distinguished by its spatial pattern. { For the illustrative case of a galaxy cluster with a cold front, where electron transport is mediated by Coulomb collisions, we estimate the CMB polarization degree at the level of 10$^{-8}$ ($sim 10$ nK). An increase of the effective electron collisionality due to plasma instabilities will reduce the effect. Such polarization, therefore, may be an independent probe of the electron collisionality in the ICM, which is one of the key properties of a high-$beta$ weakly collisional plasma from the point of view of both astrophysics and plasma theory.
We investigate the Sunyaev-Zeldovich (SZ) effect caused by primordial black holes (PBHs) on the cosmic microwave background (CMB) temperature fluctuations. The gas accreting on a PBH heats up by the release of the gravitational energy. As a result, the heated gas in the vicinity of the PBH emits the UV and X-ray photons. These photons can ionize and heat the intergalactic medium (IGM) around the PBH. Assuming the simple model of these emitting photons, we compute the profiles of the IGM ionization fraction and temperature around a PBH. Using these profiles, we evaluate the Compton $y$-parameter created by the IGM gas around a PBH. Finally, we estimate the CMB temperature angular power spectrum due to the PBH SZ effect in our model. We show that the SZ temperature anisotropy due to the PBHs has the flat angular power spectrum on small scale, $lleq2000$ and could dominate the primordial temperature spectrum on smaller scales than the Silk scale. This flat spectrum extends to the scale of the ionized region by the PBH emission. We also discuss the impact of the small-scale CMB measurement on the PBH abundance based on our results.
The polarization sensitivity of the upcoming millimetric observatories will open new possibilities for studying the properties of galaxy clusters and for using them as powerful cosmological probes. For this reason it is necessary to investigate in detail the characteristics of the polarization signals produced by their highly ionized intra-cluster medium (ICM). This work is focussed on the polarization effect induced by the ICM bulk motions, the so-called kpSZ signal, which has an amplitude proportional to the optical depth and to the square of the tangential velocity. In particular we study how this polarization signal is affected by the internal dynamics of galaxy clusters and what is its dependence on the physical modelling adopted to describe the baryonic component. This is done by producing realistic kpSZ maps starting from the outputs of two different sets of high-resolution hydrodynamical N-body simulations. The first set (17 objects) follows only non-radiative hydrodynamics, while for each of 9 objects of the second set we implement four different kinds of physical processes. Our results shows that the kpSZ signal turns out to be a very sensitive probe of the dynamical status of galaxy clusters. We find that major merger events can amplify the signal up to one order of magnitude with respect to relaxed clusters, reaching amplitude up to about 100 nuK. This result implies that the internal ICM dynamics must be taken into account when evaluating this signal because simplicistic models, based on spherical rigid bodies, may provide wrong estimates. Finally we find that the dependence on the physical modelling of the baryonic component is relevant only in the very inner regions of clusters.
Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3 x R500, i.e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole radial range. Our measurement is fully consistent with previous Planck results on integrated SZ fluxes, further strengthening the agreement between SZ and X-ray measurements inside R500. Correcting for the effects of the Planck beam, we have calculated the corresponding pressure profiles. This new constraint from SZ measurements is consistent with the X-ray constraints from XMM-Newton in the region in which the profiles overlap (i.e., [0.1-1]R500), and is in fairly good agreement with theoretical predictions within the expected dispersion. At larger radii the average pressure profile is slightly flatter than most predictions from numerical simulations. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P0, c500, gamma, alpha, beta] = [6.41, 1.81, 0.31, 1.33, 4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts we reconstruct from our stacked pressure profile the gas mass fraction profile out to 3 x R500. Within the temperature driven uncertainties, our Planck constraints are compatible with the cosmic baryon fraction and expected gas fraction in halos.
We investigate the utility of a new, self-similar pressure profile for fitting Sunyaev-Zeldovich (SZ) effect observations of galaxy clusters. Current SZ imaging instruments - such as the Sunyaev-Zeldovich Array (SZA) - are capable of probing clusters over a large range in physical scale. A model is therefore required that can accurately describe a clusters pressure profile over a broad range of radii, from the core of the cluster out to a significant fraction of the virial radius. In the analysis presented here, we fit a radial pressure profile derived from simulations and detailed X-ray analysis of relaxed clusters to SZA observations of three clusters with exceptionally high quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis of the SZ and X-ray data, we derive physical properties such as gas mass, total mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find that parameters derived from the joint fit to the SZ and X-ray data agree well with a detailed, independent X-ray-only analysis of the same clusters. In particular, we find that, when combined with X-ray imaging data, this new pressure profile yields an independent electron radial temperature profile that is in good agreement with spectroscopic X-ray measurements.
In this paper we investigate the Sunyaev-Zeldovich (SZ) effect and the X-ray surface brightness for clusters of galaxies with a non-spherical mass distribution. In particular, we consider the influence of the shape and the finite extension of a cluster as well as of a polytropic thermal profile on the Compton parameter, the X-ray surface brightness and on the determination of the Hubble constant. We find that the the non-inclusion of such effects can induce errors up to 30 per cent in the various parameters and in particular on the Hubble constant value, when compared with results obtained under the isothermal, infinitely extended and spherical shape assumptions.