No Arabic abstract
The Cepheid Period-Luminosity law is a key rung on the extragalactic distance ladder. However, numerous Cepheids are known to undergo period variations. Monitoring, refining, and understanding these period variations allows us to better determine the parameters of the Cepheids themselves and of the instability strip in which they reside, and to test models of stellar evolution. VZ Cyg, a classical Cepheid pulsating at $sim$4.864 days, has been observed for over 100 years. Combining data from literature observations, the Kilodegree Extremely Little Telescope (KELT) transit survey, and new targeted observations with the Robotically Controlled Telescope (RCT) at Kitt Peak, we find a period change rate of $dP/dt = -0.0642 pm 0.0018$ sec yr$^{-1}$. However, when only the recent observations are examined, we find a much higher period change rate of $dP/dt = - 0.0923 pm 0.0110$ sec yr$^{-1}$. This higher rate could be due to an apparent long-term (P $approx$ 26.5 yr) cyclic period variation. The possible interpretations of this single Cepheids complex period variations underscore both the need to regularly monitor pulsating variables, and the important benefits that photometric surveys such as KELT can have on the field. Further monitoring of this interesting example of Cepheid variability is recommended to confirm and better understand the possible cyclic period variations. Further, Cepheid timing analyses are necessary to fully understand their current behaviors and parameters, as well as their evolutionary histories.
We present a detailed period analysis of the bright Cepheid-type variable star V1154 Cygni (V =9.1 mag, P~4.9 d) based on almost 600 days of continuous observations by the Kepler space telescope. The data reveal significant cycle-to-cycle fluctuations in the pulsation period, indicating that classical Cepheids may not be as accurate astrophysical clocks as commonly believed: regardless of the specific points used to determine the O-C values, the cycle lengths show a scatter of 0.015-0.02 days over the 120 cycles covered by the observations. A very slight correlation between the individual Fourier parameters and the O-C values was found, suggesting that the O - C variations might be due to the instability of the light curve shape. Random fluctuation tests revealed a linear trend up to a cycle difference 15, but for long term, the period remains around the mean value. We compare the measurements with simulated light curves that were constructed to mimic V1154 Cyg as a perfect pulsator modulated only by the light travel time effect caused by low-mass companions. We show that the observed period jitter in V1154 Cyg represents a serious limitation in the search for binary companions. While the Kepler data are accurate enough to allow the detection of planetary bodies in close orbits around a Cepheid, the astrophysical noise can easily hide the signal of the light-time effect.
V440 Per is a Population I Cepheid with the period of 7.57 day and low amplitude, almost sinusoidal light and radial velocity curves. With no reliable data on the 1st harmonic, its pulsation mode identification remained controversial. We obtained a radial velocity curve of V440 Per with our new high precision and high throughput Poznan Spectroscopic Telescope. Our data reach the accuracy of 130 m/s per individual measurement and yield a secure detection of the 1st harmonic with the amplitude of A_2= 140+/- 15 m/s. The velocity Fourier phase phi_21 of V440 Per is inconsistent at the 7.25 sigma level with those of the fundamental mode Cepheids, implying that the star must be an overtone Cepheid, as originally proposed by Kienzle et al.(1999). Thus, V440 Per becomes the longest period Cepheid with the securely established overtone pulsations. We show, that the convective nonlinear pulsation hydrocode can reproduce the Fourier parameters of V440 Per very well. Requirement to match the observed properties of V440 Per constrains free parameters of the dynamical convection model used in the pulsation calculations, in particular the radiative losses parameter.
In this paper, we derive the period-luminosity (P-L) relation for Large Magellanic Cloud (LMC) Cepheids based on mid-infrared AKARI observations. AKARIs IRC sources were matched to the OGLE-III LMC Cepheid catalog. Together with the available I band light curves from the OGLE-III catalog, potential false matches were removed from the sample. This procedure excluded most of the sources in the S7 and S11 bands: hence only the P-L relation in the N3 band was derived in this paper. Random-phase corrections were included in deriving the P-L relation for the single epoch AKARI data, even though the derived P-L relation is consistent with the P-L relation without random-phase correction, though there is a sim 7 per-cent improvement in the dispersion of the P-L relation. The final adopted N3 band P-L relation is N3 = -3.246 log(P) + 15.844, with a dispersion of 0.149.
The parameters for the newly-discovered open cluster Alessi 95 are established on the basis of available photometric and spectroscopic data, in conjunction with new observations. Colour excesses for spectroscopically-observed B and A-type stars near SU Cas follow a reddening relation described by E(U-B)/E(B-V)=0.83+0.02*E(B-V), implying a value of R=Av/E(B-V)~2.8 for the associated dust. Alessi 95 has a mean reddening of E(B-V)_(B0)=0.35+-0.02 s.e., an intrinsic distance modulus of Vo-Mv=8.16+-0.04 s.e. (+-0.21 s.d.), d=429+-8 pc, and an estimated age of 10^8.2 yr from ZAMS fitting of available UBV, CCD BV, NOMAD, and 2MASS JHKs observations of cluster stars. SU Cas is a likely cluster member, with an inferred space reddening of E(B-V)=0.33+-0.02 and a luminosity of <Mv>=-3.15+-0.07 s.e., consistent with overtone pulsation (P_FM=2.75 d), as also implied by the Cepheids light curve parameters, rate of period increase, and Hipparcos parallaxes for cluster stars. There is excellent agreement of the distance estimates for SU Cas inferred from cluster ZAMS fitting, its pulsation parallax derived from the infrared surface brightness technique, and Hipparcos parallaxes, which all agree to within a few percent.
Galactic starburst clusters play a twin role in astrophysics, serving as laboratories for the study of stellar physics and also delineating the structure and recent star formation history of the Milky Way. In order to exploit these opportunities we have undertaken a multi-epoch spectroscopic survey of the red supergiant dominated young massive clusters thought to be present at both near and far ends of the Galactic Bar. Significant spectroscopic variability suggestive of radial pulsations was found for the yellow supergiant VdBH 222 #505. Follow-up photometric investigations revealed modulation with a period of ~23.325d; both timescale and pulsational profile are consistent with a Cepheid classification. As a consequence #505 may be recognised as one of the longest period Galactic cluster Cepheids identified to date and hence of considerable use in constraining the bright end of the period/luminosity relation at solar metallicities. In conjunction with extant photometry we infer a distance of ~6kpc for VdBH222 and an age of ~20Myr. This results in a moderate reduction in both integrated cluster mass (~2x10^4Msun) and the initial stellar masses of the evolved cluster members (~10Msun). As such, VdBH222 becomes an excellent test-bed for studying the properties of some of the lowest mass stars observed to undergo type-II supernovae. Moreover, the distance is in tension with a location of VdBH 222 at the far end of the Galactic Bar. Instead a birthsite in the near 3kpc arm is suggested; providing compelling evidence of extensive recent star formation in a region of the inner Milky Way which has hitherto been thought to be devoid of such activity.