Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a non-linear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.
The Andreev bound states and charge transport in a Josephson junction between two superconductors with intrinsic exchange fields are studied. We find that for a parallel configuration of the exchange fields in the superconductors the discrete spectrum consists of two pairs of spin-split states. The Josephson current in this case is mainly carried by bound states. In contrast, for the antiparallel configuration we find that there is no spin-splitting of the bound states and that for phase differences smaller than certain critical value there are no bound states at all. Hence the supercurrent is only carried by states in the continuous part of the spectrum. Our predictions can be tested by performing a tunneling spectroscopy of a weak link between two spin-split superconductors.
We consider the Higgs mode at nonzero momentum in superconductors and demonstrate that in the presence of Rashba spin-orbit coupling, it couples linearly with an external exchange field. The Higgs-spin coupling dramatically modifies the spin susceptibility near the superconducting critical temperature and consequently enhances the spin pumping effect in a ferromagnetic insulator/superconductor bilayer system. We show that this effect can be detected by measuring the magnon-induced voltage generated by the inverse spin Hall effect.
Motivated by recent progress in epitaxial growth of proximity structures of s-wave superconductors (S) and spin-active materials (M), we show that the periodic structure of S and M can behave effectively as a superconductor with pairs of point nodes, near which the low energy excitations are Weyl fermions. A simple toy model, where M is described by a Kronig-Penney potential with both spin-orbit coupling and exchange field, is proposed and solved to obtain the phase diagram of the nodal structure, the spin texture of the Weyl fermions, as well as the zero energy surface states in the form of open Fermi lines (Fermi arcs). Going beyond the simple model, a lattice model with alternating layers of S and magnetic $Z_2$ topological insulators (M) is solved. The calculated spectrum confirms previous prediction of Weyl nodes based on tunneling Hamiltonian of Dirac electrons. Our results provide further evidence that periodic structures of S and M are well suited for engineering gapless topological superconductors.
We study spin-polarized quasiparticle transport in a mesoscopic superconductor with a spin- splitting field in the presence of co-flowing supercurrent. In such a system, the nonequilibrium state is characterized by charge, spin, energy and spin energy modes. Here we show that in the presence of both spin splitting and supercurrent, all these modes are mutually coupled. As a result, the supercurrent can convert charge imbalance, that in the presence of spin splitting decays on a relatively short scale, to a long-range spin accumulation decaying only via inelastic scattering. This effect enables coherent charge-spin conversion controllable by a magnetic flux, and it can be detected by studying different symmetry components of the nonlocal conductance signal.
The coexistence and competition of superconductivity and magnetism can lead to a variety of rich physics and technological applications. Recent discovery of atomic-layer superconductors and self-assembly of magnetic molecules on solid surfaces should allow one to create a new two-dimensional (2D) hybrid superconducting system, but its possibility has never been fully investigated so far. Here we report the fabrication of highly ordered 2D hybrid superconductors based on indium atomic layers on silicon surfaces and magnetic metal-phthalocyanines (MPc) and clarify their detailed structural, superconducting and magnetic properties. Our primary findings include a substantial controllability of the superconducting transition temperatures (Tc) through substitution of central metal ions (M = Cu, Fe, Mn) of the molecules. This is attributed to charge transfers between the magnetic molecules and the superconducting layers and to different degrees of exchange coupling between them, which originates from anisotropic distributions of the relevant d-orbitals. The present study opens a route for designing and creating exotic 2D superconductors with an atomic-scale precision.
Mikel Rouco
,Tero T. Heikkila
,F. Sebastian Bergeret
.
(2017)
.
"Electron refrigeration in hybrid structures with spin-split superconductors"
.
Mikel Rouco
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا