Do you want to publish a course? Click here

Serendipitous discovery of quadruply-imaged quasars: two diamonds

314   0   0.0 ( 0 )
 Added by John Lucey Dr
 Publication date 2017
  fields Physics
and research's language is English
 Authors John R. Lucey




Ask ChatGPT about the research

Gravitationally lensed quasars are powerful and versatile astrophysical tools, but they are challengingly rare. In particular, only ~25 well-characterized quadruple systems are known to date. To refine the target catalogue for the forthcoming Taipan Galaxy Survey, the images of a large number of sources are being visually inspected in order to identify objects that are confused by a foreground star or galaxies that have a distinct multi-component structure. An unexpected by-product of this work has been the serendipitous discovery of about a dozen galaxies that appear to be lensing quasars, i.e. pairs or quartets of foreground stellar objects in close proximity to the target source. Here we report two diamond-shaped systems. Follow-up spectroscopy with the IMACS instrument on the 6.5m Magellan Baade telescope confirms one of these as a z = 1.975 quasar quadruply lensed by a double galaxy at z = 0.293. Photometry from publicly available survey images supports the conclusion that the other system is a highly sheared quadruply-imaged quasar. In starting with objects thought to be galaxies, our lens finding technique complements the conventional approach of first identifying sources with quasar-like colours and subsequently finding evidence of lensing.



rate research

Read More

Gravitational lensing of point sources located inside the lens caustic is known to produce four images in a configuration closely related to the source position. We study this relation in the particular case of a sample of quadruply-imaged quasars observed by the Hubble Space Telescope (HST). Strong correlations between the parameters defining the image configuration are revealed. The relation between the image configuration and the source position is studied. Some simple features of the selected data sample are exposed and commented upon. In particular, evidence is found for the selected sample to be biased in favour of large magnification systems. While having no direct impact on practical analyses of specific systems, the results have pedagogical value and deepen our understanding of the mechanism of gravitational lensing.
Combining the exquisite angular resolution of Gaia with optical light curves and WISE photometry, the Gaia Gravitational Lenses group (GraL) uses machine learning techniques to identify candidate strongly lensed quasars, and has confirmed over two dozen new strongly lensed quasars from the Gaia Data Release 2. This paper reports on the 12 quadruply-imaged quasars identified by this effort to date, which is approximately a 20% increase in the total number of confirmed quadruply-imaged quasars. We discuss the candidate selection, spectroscopic follow-up, and lens modeling. We also report our spectroscopic failures as an aid for future investigations.
The first resolved, multiply imaged supernova Type Ia, iPTF16geu, was observed 4 years ago, five decades after such systems were first envisioned. Because of the unique properties of the source, these systems hold a lot of promise for the study of galaxy structure and cosmological parameters. However, this very first example presented modelers with a few puzzles. It was expected that to explain image fluxes a contribution from microlensing by stars would be required, but to accommodate the magnitude of microlensing, the density slope of the elliptical power law lens model had to be quite shallow, $rho_{2D} propto r^{-0.7}$. Furthermore, the center of mass had to be displaced from that of observed light by ~0.1 kpc, and the position angle of light distribution was misaligned with that of mass by ~40 degrees. In this paper we present mass models that resolve the first two problems, and suggest a resolution of the third. Motivated by observations of local ellipticals, and some recent analysis of galaxy-scale lenses, our mass models consist of two offset (baryonic) mass components. The resulting mass distributions have a single centroid, but are lopsided, and have isodensity contours that are not purely elliptical and not self-similar with radius. For many of our models the microlensing requirements are modest, and the ring formed by the extended supernova host galaxy resembles the observed one.
85 - Richard Luhtaru 2021
Among known strongly lensed quasar systems, ~25% have gravitational potentials sufficiently flat (and sources sufficiently well aligned) to produce four images rather than two. The projected flattening of the lensing galaxy and tides from neighboring galaxies both contribute to the potentials quadrupole. Witts hyperbola and Wynnes ellipse permit determination of the overall quadrupole from the positions of the quasar images. The position of the lensing galaxy resolves the distinct contributions of intrinsic ellipticity and tidal shear to that quadrupole. Among 31 quadruply lensed quasars systems with statistically significant decompositions, 15 are either reliably ($2sigma$) or provisionally ($1sigma$) shear-dominated and 11 are either reliably or provisionally ellipticity-dominated. For the remaining 8, the two effects make roughly equal contributions to the combined cross section (newly derived here) for quadruple lensing. This observational result is strongly at variance with the ellipticity-dominated forecast of Oguri & Marshall (2010).
Strong-gravitational lens systems with quadruply-imaged quasars (quads) are unique probes to address several fundamental problems in cosmology and astrophysics. Although they are intrinsically very rare, ongoing and planned wide-field deep-sky surveys are set to discover thousands of such systems in the next decade. It is thus paramount to devise a general framework to model strong-lens systems to cope with this large influx without being limited by expert investigator time. We propose such a general modelling framework (implemented with the publicly available software Lenstronomy) and apply it to uniformly model three-band Hubble Space Telescope Wide Field Camera 3 images of 13 quads. This is the largest uniformly modelled sample of quads to date and paves the way for a variety of studies. To illustrate the scientific content of the sample, we investigate the alignment between the mass and light distribution in the deflectors. The position angles of these distributions are well-aligned, except when there is strong external shear. However, we find no correlation between the ellipticity of the light and mass distributions. We also show that the observed flux-ratios between the images depart significantly from the predictions of simple smooth models. The departures are strongest in the bluest band, consistent with microlensing being the dominant cause in addition to millilensing. Future papers will exploit this rich dataset in combination with ground based spectroscopy and time delays to determine quantities such as the Hubble constant, the free streaming length of dark matter, and the normalization of the initial stellar mass function.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا