Do you want to publish a course? Click here

A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves

89   0   0.0 ( 0 )
 Added by David Long
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solar eruptions are the most spectacular events in our solar system and are associated with many different signatures of energy release including solar flares, coronal mass ejections, global waves, radio emission and accelerated particles. Here, we apply the Coronal Pulse Identification and Tracking Algorithm (CorPITA) to the high cadence synoptic data provided by the Solar Dynamic Observatory (SDO) to identify and track global waves observed by SDO. 164 of the 362 solar flare events studied (45%) are found to have associated global waves with no waves found for the remaining 198 (55%). A clear linear relationship was found between the median initial velocity and the acceleration of the waves, with faster waves exhibiting a stronger deceleration (consistent with previous results). No clear relationship was found between global waves and type II radio bursts, electrons or protons detected in-situ near Earth. While no relationship was found between the wave properties and the associated flare size (with waves produced by flares from B to X-class), more than a quarter of the active regions studied were found to produce more than one wave event. These results suggest that the presence of a global wave in a solar eruption is most likely determined by the structure and connectivity of the erupting active region and the surrounding quiet solar corona rather than by the amount of free energy available within the active region.

rate research

Read More

We investigate the physical conditions of the sources of two metric Type-II bursts associated with CME expansions with the aim of verifying the relationship between the shocks and the CMEs, comparing the heights of the radio sources and the heights of the EUV waves associated with the CMEs. The heights of the EUV waves associated with the events were determined in relation to the wave fronts. The heights of the shocks were estimated by applying two different density models to the frequencies of the Type-II emissions and compared with the heights of the EUV waves. For the 13 June 2010 event, with band-splitting, the shock speed was estimated from the frequency drifts of the upper and lower branches of the harmonic lane, taking into account the H/F frequency ratio fH/fF = 2. Exponential fits on the intensity maxima of the branches revealed to be more consistent with the morphology of the spectrum of this event. For the 6 June 2012 event, with no band-splitting and with a clear fundamental lane on the spectrum, the shock speed was estimated directly from the frequency drift of the fundamental emission, determined by linear fit on the intensity maxima of the lane. For each event, the most appropriate density model was adopted to estimate the physical parameters of the radio source. The 13 June 2010 event presented a shock speed of 664-719 km/s, consistent with the average speed of the EUV wave fronts of 609 km/s. The 6 June 2012 event was related to a shock of speed of 211-461 km/s, also consistent with the average speed of the EUV wave fronts of 418 km/s. For both events, the heights of the EUV wave revealed to be compatible with the heights of the radio source, assuming a radial propagation of the shock.
At the beginning of the 4 November 2015 flare, in the 1300 -- 2000 MHz frequency range, we observed a very rare slowly positively drifting burst. We searched for associated phenomena in simultaneous EUV observations made by IRIS, SDO/AIA, Hinode/XRT and in H alpha observations. We found that this radio burst was accompanied with the bright blob, visible at transition region, coronal, and flare temperatures, falling down to the chromosphere along the dark loop with the velocity of about 280 km/s. The dark loop was visible in H alpha but disappeared afterwards. Furthermore, we found that the falling blob interacted with the chromosphere as expressed by a sudden change of the H alpha spectra at the location of this interaction. Considering different possibilities we propose that the observed slowly positively drifting burst is generated by the thermal conduction front formed in front of the falling hot EUV blob.
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white light a large-scale dome-shaped expanding coronal transient with perfectly connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57) concluded that the dome was formed by a weak shock wave. We have revealed two EUV components, one of which corresponded to this transient. All of its properties found from EUV, white light, and a metric type II burst match expectations for a freely expanding coronal shock wave including correspondence to the fast-mode speed distribution, while the transient sweeping over the solar surface had a speed typical of EUV waves. The shock wave was presumably excited by an abrupt filament eruption. Both a weak shock approximation and a power-law fit match kinematics of the transient near the Sun. Moreover, the power-law fit matches expansion of the CME leading edge up to 24 solar radii. The second, quasi-stationary EUV component near the dimming was presumably associated with a stretched CME structure; no indications of opening magnetic fields have been detected far from the eruption region.
Type-I bursts (i.e. noise storms) are the earliest-known type of solar radio emission at the metre wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7-0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentely et al. (Solar Phys. 193, 227, 2000).
152 - R. Bucik , D. E. Innes , L. Guo 2015
Small 3He-rich solar energetic particle (SEP) events with their anomalous abundances, markedly different from solar system, provide evidence for a unique acceleration mechanism that operates routinely near solar active regions. Although the events are sometimes accompanied by coronal mass ejections (CMEs) it is believed that mass and isotopic fractionation is produced directly in the flare sites on the Sun. We report on a large-scale extreme ultraviolet (EUV) coronal wave observed in association with 3He-rich SEP events. In the two examples discussed, the observed waves were triggered by minor flares and appeared concurrently with EUV jets and type III radio bursts but without CMEs. The energy spectra from one event are consistent with so-called class-1 (characterized by power laws) while the other with class-2 (characterized by rounded 3He and Fe spectra) 3He-rich SEP events, suggesting different acceleration mechanisms in the two. The observation of EUV waves suggests that large-scale disturbances, in addition to more commonly associated jets, may be responsible for the production of 3He-rich SEP events.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا