Do you want to publish a course? Click here

Test of Lepton Flavor Universality by the measurement of the $B^0 to D^{*-} tau^+ u_{tau}$ branching fraction using three-prong $tau$ decays

116   0   0.0 ( 0 )
 Added by Guy Wormser
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The ratio of branching fractions ${cal{R}}(D^{*-})equiv {cal{B}}(B^0 to D^{*-} tau^+ u_{tau})/{cal{B}}(B^0 to D^{*-} mu^+ u_{mu})$ is measured using a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3$~$fb$^{-1}$. The $tau$ lepton is reconstructed with three charged pions in the final state. A novel method is used that exploits the different vertex topologies of signal and backgrounds to isolate samples of semitauonic decays of $b$ hadrons with high purity. Using the $B^0 to D^{*-}pi^+pi^-pi^+$ decay as the normalization channel, the ratio ${cal{B}}(B^0 to D^{*-} tau^+ u_{tau})/{cal{B}}(B^0 to D^{*-}pi^+pi^-pi^+)$ is measured to be $1.97 pm 0.13 pm 0.18$, where the first uncertainty is statistical and the second systematic. An average of branching fraction measurements for the normalization channel is used to derive ${cal{B}}(B^0 to D^{*-} tau^+ u_{tau}) = (1.42 pm 0.094 pm 0.129 pm 0.054) %$, where the third uncertainty is due to the limited knowledge of ${cal{B}}(B^0to D^{*-}pi^+pi^-pi^+)$. A test of lepton flavor universality is performed using the well-measured branching fraction ${cal{B}}(B^0 to D^{*-} mu^+ u_{mu})$ to compute ${cal{R}}(D^{*-}) = 0.291 pm 0.019 pm 0.026 pm 0.013$, where the third uncertainty originates from the uncertainties on ${cal{B}}(B^0 to D^{*-}pi^+pi^-pi^+)$ and ${cal{B}}(B^0 to D^{*-} mu^+ u_{mu})$. This measurement is in agreement with the Standard Model prediction and with previous measurements.



rate research

Read More

The ratio of branching fractions ${cal{R}}(D^{*-})equiv {cal{B}}(B^0 to D^{*-} tau^+ u_{tau})/{cal{B}}(B^0 to D^{*-} mu^+ u_{mu})$ is measured using a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies of 7 and 8 Tev, corresponding to an integrated luminosity of 3$~$fb$^{-1}$. For the first time ${cal{R}}(D^{*-})$ is determined using the $tau$ lepton decays with three charged pions in the final state. The $B^0 to D^{*-} tau^+ u_{tau}$ yield is normalized to that of the $B^0to D^{*-} pi^+pi^-pi^+$ mode, providing a measurement of ${cal{B}}(B^0to D^{*-}tau^+ u_{tau})/{cal{B}}(B^0to D^{*-}pi^+pi^-pi^+) = 1.97 pm 0.13 pm 0.18$, where the first uncertainty is statistical and the second systematic. The value of ${cal{B}}(B^0 to D^{*-} tau^+ u_{tau}) = (1.42 pm 0.094 pm 0.129 pm 0.054)% $ is obtained, where the third uncertainty is due to the limited knowledge of the branching fraction of the normalization mode. Using the well-measured branching fraction of the $B^0 to D^{*-} mu^+ u_{mu}$ decay, a value of ${cal{R}}(D^{*-}) = 0.291 pm 0.019 pm 0.026 pm 0.013$ is established, where the third uncertainty is due to the limited knowledge of the branching fractions of the normalization and $B^0to D^{*-}mu^+ u_{mu}$ modes. This measurement is in agreement with the Standard Model prediction and with previous results.
We report the first measurement of the $tau$ lepton polarization in the decay ${bar B} rightarrow D^* tau^- {bar u_{tau}}$ as well as a new measurement of the ratio of the branching fractions $R(D^{*}) = mathcal{B}({bar B} rightarrow D^* tau^- {bar u_{tau}}) / mathcal{B}({bar B} rightarrow D^* ell^- {bar u_{ell}})$, where $ell^-$ denotes an electron or a muon, with the decays $tau^- rightarrow pi^- u_{tau}$ and $tau^- rightarrow rho^- u_{tau}$. We use the full data sample of $772 times 10^6$ $B{bar B}$ pairs accumulated with the Belle detector at the KEKB electron-positron collider. Our preliminary results, $R(D^*) = 0.276 pm 0.034{rm (stat.)} ^{+0.029} _{-0.026}{rm (syst.)}$ and $P_{tau} = -0.44 pm 0.47 {rm (stat.)} ^{+0.20} _{-0.17} {rm (syst.)}$, are consistent with the theoretical predictions of the Standard Model within $0.6$ standard deviation.
Using a data set of 6.32 fb$^{-1}$ of $e^+ e^-$ annihilation data collected with the BESIII detector at center-of-mass energies between 4178 and 4226 MeV, we have measured the absolute branching fraction of the leptonic decay $D_s^+ to tau^+ u_{tau}$ via $tau^+ to e^+ u_e bar{ u}_{tau}$ to be $mathcal{B}_{D_s^+ to tau^+ u_{tau}}=(5.27pm0.10pm0.12)times10^{-2}$, where the first uncertainty is statistical and the second is systematic. Combining with $f_{D_s^+}$ from Lattice quantum chromodynamics calculations or the $|V_{cs}|$ from the CKMfitter group, we extract $|V_{cs}|=0.978pm0.009pm0.012$ and $f_{D_s^+}= (251.1pm2.4pm3.0)$ MeV, respectively. These results are the most precise to date. Combining our result with the world averages of $mathcal{B}_{D_s^+ to tau^+ u_{tau}}$ and $mathcal{B}_{D_s^+ to mu^+ u_{mu}}$, we obtain the ratio of the branching fractions $mathcal{B}_{D_s^+ to tau^+ u_{tau}} / mathcal{B}_{D_s^+ to mu^+ u_{mu}} = 9.72pm0.37$, which is consistent with the standard model prediction of lepton flavor universality.
We report the first measurement of the $D^{ast -}$ meson polarization in the decay $B^0 to D^{*-} tau^+ u_{tau}$ using the full data sample of 772$times 10^6$ $Bbar{B}$ pairs recorded with the Belle detector at the KEKB electron-positron collider. Our result, $F_L^{D^ast} = 0.60 pm 0.08 ({rm stat}) pm 0.04 ({rm sys})$, where $F_L^{D^ast}$ denotes the $D^{ast-}$ meson longitudinal polarization fraction, agrees within about $1.7$ standard deviations of the standard model prediction.
75 - S. Hirose , T. Iijima , I. Adachi 2017
With the full data sample of $772 times 10^6$ $B{bar B}$ pairs recorded by the Belle detector at the KEKB electron-positron collider, the decay $bar{B} rightarrow D^* tau^- bar{ u}_tau$ is studied with the hadronic $tau$ decays $tau^- rightarrow pi^- u_tau$ and $tau^- rightarrow rho^- u_tau$. The $tau$ polarization $P_tau(D^*)$ in two-body hadronic $tau$ decays is measured, as well as the ratio of the branching fractions $R(D^{*}) = mathcal{B}(bar {B} rightarrow D^* tau^- bar{ u}_tau) / mathcal{B}(bar{B} rightarrow D^* ell^- bar{ u}_ell)$, where $ell^-$ denotes an electron or a muon. Our results, $P_tau(D^*) = -0.38 pm 0.51 {rm (stat)} ^{+0.21}_{-0.16} {rm (syst)}$ and $R(D^*) = 0.270 pm 0.035{rm (stat)} ^{+0.028}_{-0.025}{rm (syst)}$, are consistent with the theoretical predictions of the Standard Model. The polarization values of $P_tau(D^*) > +0.5$ are excluded at the 90% confidence level.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا