Do you want to publish a course? Click here

Splitting Proofs for Interpolation

161   0   0.0 ( 0 )
 Added by Bernhard Gleiss
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We study interpolant extraction from local first-order refutations. We present a new theoretical perspective on interpolation based on clearly separating the condition on logical strength of the formula from the requirement on the com- mon signature. This allows us to highlight the space of all interpolants that can be extracted from a refutation as a space of simple choices on how to split the refuta- tion into two parts. We use this new insight to develop an algorithm for extracting interpolants which are linear in the size of the input refutation and can be further optimized using metrics such as number of non-logical symbols or quantifiers. We implemented the new algorithm in first-order theorem prover VAMPIRE and evaluated it on a large number of examples coming from the first-order proving community. Our experiments give practical evidence that our work improves the state-of-the-art in first-order interpolation.



rate research

Read More

We define a proof system for exceptions which is close to the syntax for exceptions, in the sense that the exceptions do not appear explicitly in the type of any expression. This proof system is sound with respect to the intended denotational semantics of exceptions. With this inference system we prove several properties of exceptions.
Secure multi-party computation (MPC) is a general cryptographic technique that allows distrusting parties to compute a function of their individual inputs, while only revealing the output of the function. It has found applications in areas such as auctioning, email filtering, and secure teleconference. Given its importance, it is crucial that the protocols are specified and implemented correctly. In the programming language community it has become good practice to use computer proof assistants to verify correctness proofs. In the field of cryptography, EasyCrypt is the state of the art proof assistant. It provides an embedded language for probabilistic programming, together with a specialized logic, embedded into an ambient general purpose higher-order logic. It allows us to conveniently express cryptographic properties. EasyCrypt has been used successfully on many applications, including public-key encryption, signatures, garbled circuits and differential privacy. Here we show for the first time that it can also be used to prove security of MPC against a malicious adversary. We formalize additive and replicated secret sharing schemes and apply them to Maurers MPC protocol for secure addition and multiplication. Our method extends to general polynomial functions. We follow the insights from EasyCrypt that security proofs can be often be reduced to proofs about program equivalence, a topic that is well understood in the verification of programming languages. In particular, we show that in the passive case the non-interference-based definition is equivalent to a standard game-based security definition. For the active case we provide a new NI definition, which we call input independence.
102 - Federico Aschieri 2018
We introduce a first proofs-as-parallel-programs correspondence for classical logic. We define a parallel and more powerful extension of the simply typed lambda calculus corresponding to an analytic natural deduction based on the excluded middle law. The resulting functional language features a natural higher-order communication mechanism between processes, which also supports broadcasting. The normalization procedure makes use of reductions that implement novel techniques for handling and transmitting process closures.
Satisfiability modulo theories (SMT) solvers have throughout the years been able to cope with increasingly expressive formulas, from ground logics to full first-order logic modulo theories. Nevertheless, higher-order logic within SMT is still little explored. One main goal of the Matryoshka project, which started in March 2017, is to extend the reasoning capabilities of SMT solvers and other automatic provers beyond first-order logic. In this preliminary report, we report on an extension of the SMT-LIB language, the standard input format of SMT solvers, to handle higher-order constructs. We also discuss how to augment the proof format of the SMT solver veriT to accommodate these new constructs and the solving techniques they require.
In this paper we provide two new semantics for proofs in the constructive modal logics CK and CD. The first semantics is given by extending the syntax of combinatorial proofs for propositional intuitionistic logic, in which proofs are factorised in a linear fragment (arena net) and a parallel weakening-contraction fragment (skew fibration). In particular we provide an encoding of modal formulas by means of directed graphs (modal arenas), and an encoding of linear proofs as modal arenas equipped with vertex partitions satisfying topological criteria. The second semantics is given by means of winning innocent strategies of a two-player game over modal arenas. This is given by extending the Heijltjes-Hughes-Stra{ss}burger correspondence between intuitionistic combinatorial proofs and winning innocent strategies in a Hyland-Ong arena. Using our first result, we provide a characterisation of winning strategies for games on a modal arena corresponding to proofs with modalities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا